TY - JOUR
T1 - Massive star evolution
T2 - Nucleosynthesis and nuclear reaction rate uncertainties
AU - Heger, A.
AU - Woosley, S. E.
AU - Rauscher, T.
AU - Hoffman, R. D.
AU - Boyes, M. M.
PY - 2002/1/1
Y1 - 2002/1/1
N2 - We present a nucleosynthesis calculation of a 25 M⊙ star of solar composition that includes all relevant isotopes up to polonium. We follow the stellar evolution from hydrogen burning till iron core collapse and simulate the explosion using a 'piston' approach. We discuss the influence of two key nuclear reaction rates, 12C(α, γ)16O and 22Ne(α, n)25Mg, on stellar evolution and nucleosynthesis. The former significantly influences the resulting core sizes (iron, silicon, oxygen) and the overall presupernova structure of the star. It thus has significant consequences for the supernova explosion itself and the compact remnant formed. The later rate considerably affects the s-process in massive stars and we demonstrate the changes that different currently suggested values for this rate cause.
AB - We present a nucleosynthesis calculation of a 25 M⊙ star of solar composition that includes all relevant isotopes up to polonium. We follow the stellar evolution from hydrogen burning till iron core collapse and simulate the explosion using a 'piston' approach. We discuss the influence of two key nuclear reaction rates, 12C(α, γ)16O and 22Ne(α, n)25Mg, on stellar evolution and nucleosynthesis. The former significantly influences the resulting core sizes (iron, silicon, oxygen) and the overall presupernova structure of the star. It thus has significant consequences for the supernova explosion itself and the compact remnant formed. The later rate considerably affects the s-process in massive stars and we demonstrate the changes that different currently suggested values for this rate cause.
KW - Nuclear physics: uncertainties
KW - Stars: massive, evolution, nucleosynthesis
UR - http://www.scopus.com/inward/record.url?scp=0036068941&partnerID=8YFLogxK
U2 - 10.1016/S1387-6473(02)00184-7
DO - 10.1016/S1387-6473(02)00184-7
M3 - Short Survey
AN - SCOPUS:0036068941
SN - 1387-6473
VL - 46
SP - 463
EP - 468
JO - New Astronomy Reviews
JF - New Astronomy Reviews
IS - 8-10
ER -