Mass loss and yield uncertainty in low-mass asymptotic giant branch stars

Richard James Stancliffe, C Simon Jeffery

Research output: Contribution to journalArticleResearchpeer-review

42 Citations (Scopus)

Abstract

We investigate the uncertainty in surface abundances and yields of asymptotic giant branch (AGB) stars. We apply three different mass-loss laws to a 1.5-M-circle dot star of metallicity Z = 0.008 at the beginning of the thermally pulsing-asymptotic giant branch (TP-AGB) phase. Efficient third dredge-up is found even at very low envelope mass, contrary to previous simulations with other evolution codes. We find that the yield of carbon is uncertain by about 15 per cent and for most other light elements the yield is uncertain at the level of 20-80 per cent. For iron group elements, the uncertainty varies from around 30 per cent for the more-abundant species to over a factor of 2 for the less-abundant radioactive species, like Fe-60. The post-AGB surface abundances for this mass and metallicity are much more uncertain due to the dilution of dredged-up material in differing envelope masses in the later stages of the models. Our results are compared to known planetary nebula and post-AGB abundances. We find that the models are mostly consistent with observations but we are unable to reproduce observations of some of the isotopes.
Original languageEnglish
Pages (from-to)1280 - 1290
Number of pages11
JournalMonthly Notices of the Royal Astronomical Society
Volume375
Issue number4
Publication statusPublished - 2007
Externally publishedYes

Cite this