Manipulating the mitochondrial genome to enhance cattle embryo development

Kanokwan Srirattana, Justin C. St. John

Research output: Contribution to journalArticleResearchpeer-review

15 Citations (Scopus)


The mixing of mitochondrial DNA (mtDNA) from the donor cell and the recipient oocyte in embryos and offspring derived from somatic cell nuclear transfer (SCNT) compromises genetic integrity and affects embryo development. We set out to generate SCNT embryos that inherited their mtDNA from the recipient oocyte only, as is the case following natural conception. While SCNT blastocysts produced from Holstein (Bos taurus) fibroblasts depleted of their mtDNA, and oocytes derived from Angus (Bos taurus) cattle possessed oocyte mtDNA only, the coexistence of donor cell and oocyte mtDNA resulted in blastocysts derived from nondepleted cells. Moreover, the use of the reprogramming agent, Trichostatin A (TSA), further improved the development of embryos derived from depleted cells. RNA-seq analysis highlighted 35 differentially expressed genes from the comparison between blastocysts generated from nondepleted cells and blastocysts from depleted cells, both in the presence of TSA. The only differences between these two sets of embryos were the presence of donor cell mtDNA, and a significantly higher mtDNA copy number for embryos derived from nondepleted cells. Furthermore, the use of TSA on embryos derived from depleted cells positively modulated the expression of CLDN8, TMEM38A, and FREM1, which affect embryonic development. In conclusion, SCNT embryos produced by mtDNA depleted donor cells have the same potential to develop to the blastocyst stage without the presumed damaging effect resulting from the mixture of donor and recipient mtDNA.

Original languageEnglish
Pages (from-to)2065-2080
Number of pages16
JournalG3: Genes, Genomes, Genetics
Issue number7
Publication statusPublished - 1 Jul 2017


  • Cattle
  • Depletion
  • Embryo development
  • Mitochondrial DNA
  • Somatic cell nuclear transfer

Cite this