Mandibular corpus shape is a taxonomic indicator in extant hominids

Katharine L. Balolia, Elise C. Jakeman, Jason S. Massey, Colin Groves, Bernard Wood

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

Objectives: The aim of this study is to understand whether the shape of three sub-regions of the mandibular corpus (the alveolar arch, corpus at M1 and posterior symphysis) are useful for making taxonomic assessments at the genus and species levels in extant hominids. Materials and Methods: We use data taken from 3D surface scans of the mandibular corpus of seven extant hominid taxa: Gorilla gorilla gorilla, Gorilla beringei graueri, Homo sapiens, Pan paniscus, Pan troglodytes schweinfurthii, Pongo abelii, and Pongo pygmaeus pygmaeus to generate four shape variables: alveolar arch shape (AAS), corpus shape at M1 (CSM1), posterior symphysis shape at the midline (PSSM), and posterior symphysis shape (PSS). To ascertain how reliable each mandibular shape variable is for assessing taxonomy, we ran canonical discriminant and discriminant function analysis, reporting cross-validated results. Results: Using a combination of three mandibular corpus shape variables, 99% of specimens were classified correctly for genus-level analyses. A maximum of 100% of Pan specimens, 94% of Gorilla specimens and 96% of Pongo specimens were classified correctly at the species level when up to three mandibular shape variables were included in the analyses. When mandibular corpus variables were considered in isolation, posterior symphysis shape yielded the highest overall correct classification results. Discussion: The high taxonomic classification rates at both the genus and species level, using 3D surface data and advanced quantification techniques, show that the shape of the alveolar arch, corpus at M1 and symphysis can distinguish extant hominid taxa. These findings have implications for assessing the taxonomy of extinct hominid specimens which preserve these mandibular sub-regions.

Original languageEnglish
Pages (from-to)25-40
Number of pages16
JournalAmerican Journal of Physical Anthropology
Volume172
Issue number1
DOIs
Publication statusPublished - May 2020
Externally publishedYes

Keywords

  • 3D surface scans
  • geometric morphometrics
  • great ape
  • mandible
  • taxonomy

Cite this