TY - JOUR
T1 - Magnetic resonance imaging based assessment of bone microstructure as a non-invasive alternative to histomorphometry in patients with chronic kidney disease
AU - Sharma, Ashish K.
AU - Toussaint, Nigel D.
AU - Elder, Grahame J.
AU - Masterson, Rosemary
AU - Holt, Stephen G.
AU - Robertson, Patricia L.
AU - Ebeling, Peter R.
AU - Baldock, Paul
AU - Miller, Rhiannon C.
AU - Rajapakse, Chamith S.
PY - 2018/9/1
Y1 - 2018/9/1
N2 - Background: Chronic kidney disease (CKD) adversely affects bone microarchitecture and increases fracture risk. Historically, bone biopsy has been the ‘gold standard’ for evaluating renal bone disease but is invasive and infrequently performed. High-resolution magnetic resonance imaging (MRI) quantifies bone microarchitecture noninvasively. In patients with CKD, it has not been compared with results derived from bone biopsy or with imaging using dual energy X-ray absorptiometry (DXA). Methods: Fourteen patients with end-stage kidney disease (ESKD) underwent MRI at the distal tibia, bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA; hip and spine) and transiliac bone biopsies with histomorphometry and microcomputed tomography (micro-CT). All patients had biomarkers of mineral metabolism. Associations were determined by Spearman's or Pearson's rank correlation coefficients. Results: MRI indices of trabecular network integrity, surface to curve ratio (S/C) and erosion index (EI), correlated to histomorphometric trabecular bone volume (S/C r = 0.85, p = 0.0003; EI r = −0.82, p = 0.001), separation (S/C r = −0.58, p = 0.039; EI r = 0.79, p = 0.0012) and thickness (S/C, r = 0.65, p = 0.017). MRI EI and trabecular thickness (TbTh) also correlated to micro-CT trabecular separation (EI r = 0.63, p = 0.02; TbTh r = −0.60, p = 0.02). Significant correlations were observed between histomorphometric mineralization and turnover indices and various MRI parameters. MRI-derived trabecular parameters were also significantly related to femoral neck BMD. Conclusions: This study highlights the heterogeneity of bone microarchitecture at differing skeletal sites. MRI demonstrates significant, relevant associations to important bone biopsy and DXA indices and warrants further investigation to assess its potential to non-invasively evaluate changes in bone structure and quality over time.
AB - Background: Chronic kidney disease (CKD) adversely affects bone microarchitecture and increases fracture risk. Historically, bone biopsy has been the ‘gold standard’ for evaluating renal bone disease but is invasive and infrequently performed. High-resolution magnetic resonance imaging (MRI) quantifies bone microarchitecture noninvasively. In patients with CKD, it has not been compared with results derived from bone biopsy or with imaging using dual energy X-ray absorptiometry (DXA). Methods: Fourteen patients with end-stage kidney disease (ESKD) underwent MRI at the distal tibia, bone mineral density (BMD) by dual energy X-ray absorptiometry (DXA; hip and spine) and transiliac bone biopsies with histomorphometry and microcomputed tomography (micro-CT). All patients had biomarkers of mineral metabolism. Associations were determined by Spearman's or Pearson's rank correlation coefficients. Results: MRI indices of trabecular network integrity, surface to curve ratio (S/C) and erosion index (EI), correlated to histomorphometric trabecular bone volume (S/C r = 0.85, p = 0.0003; EI r = −0.82, p = 0.001), separation (S/C r = −0.58, p = 0.039; EI r = 0.79, p = 0.0012) and thickness (S/C, r = 0.65, p = 0.017). MRI EI and trabecular thickness (TbTh) also correlated to micro-CT trabecular separation (EI r = 0.63, p = 0.02; TbTh r = −0.60, p = 0.02). Significant correlations were observed between histomorphometric mineralization and turnover indices and various MRI parameters. MRI-derived trabecular parameters were also significantly related to femoral neck BMD. Conclusions: This study highlights the heterogeneity of bone microarchitecture at differing skeletal sites. MRI demonstrates significant, relevant associations to important bone biopsy and DXA indices and warrants further investigation to assess its potential to non-invasively evaluate changes in bone structure and quality over time.
KW - Bone biopsy
KW - Bone mineral density
KW - Bone turnover
KW - Magnetic resonance imaging
KW - Micro computed tomography
KW - Renal osteodystrophy
UR - http://www.scopus.com/inward/record.url?scp=85048020208&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2018.05.029
DO - 10.1016/j.bone.2018.05.029
M3 - Article
C2 - 29860153
AN - SCOPUS:85048020208
SN - 8756-3282
VL - 114
SP - 14
EP - 21
JO - Bone
JF - Bone
ER -