TY - JOUR
T1 - Magnetic core properties and their thermal stability in a BCC Fe‐Zr‐B‐Cu alloy with nanoscale grain size
AU - Makino, Akihiro
AU - Suzuki, Kiyonori
AU - Inoue, Akihisa
AU - Masumoto, Tsuyosi
PY - 1993/1/1
Y1 - 1993/1/1
N2 - A mostly single bcc phase with nanoscale grain size of 10 to 20 nm has been found to form by annealing amorphous Fe‐Zr‐B, Fe‐Hf‐B and Fe‐M‐B‐Cu (M = Ti, Zr, Hf, Nb and Ta) alloys. It has further been clarified that the newly developed nanocrystalline bcc alloys exhibit high permeability (μe) combined with high saturation magnetization (Bs). Subsequently, the possible application potentials of the bcc alloys were investigated. The core loss is as small as 66 mW/kg at 1 T and 50 Hz for a nanocrystalline bcc Fe86Zr7B6Cu1 alloy obtained by annealing for 3.6 ks at 873 K. This value is 45 and 95 percent smaller than those for amorphous Fe86Si9B13 alloy and Fe‐3.5 percent Si alloy, respectively, which are presently in use as core materials in electric power transformers. The frequency dependence of the core loss for the bcc alloy at 0.2 T is almost the same as that for an amorphous Co70.5Fe4.5Si10B15 alloy with zero magnetostriction. In the frequency range of 10 to 300 kHz, the core loss for the bcc alloy is slightly smaller than the Co base amorphous which has been used as core material in high‐frequency transformers. Furthermore, the core losses of the nanocrystalline Fe86Zr7B6Cu1 alloy also were found to have high stability against thermal aging. Thus, nanocrystalline bcc Fe‐Zr‐B‐Cu alloys with the advantages of high Bs, high μe, and low core loss is expected to be used as a core material in various transformers.
AB - A mostly single bcc phase with nanoscale grain size of 10 to 20 nm has been found to form by annealing amorphous Fe‐Zr‐B, Fe‐Hf‐B and Fe‐M‐B‐Cu (M = Ti, Zr, Hf, Nb and Ta) alloys. It has further been clarified that the newly developed nanocrystalline bcc alloys exhibit high permeability (μe) combined with high saturation magnetization (Bs). Subsequently, the possible application potentials of the bcc alloys were investigated. The core loss is as small as 66 mW/kg at 1 T and 50 Hz for a nanocrystalline bcc Fe86Zr7B6Cu1 alloy obtained by annealing for 3.6 ks at 873 K. This value is 45 and 95 percent smaller than those for amorphous Fe86Si9B13 alloy and Fe‐3.5 percent Si alloy, respectively, which are presently in use as core materials in electric power transformers. The frequency dependence of the core loss for the bcc alloy at 0.2 T is almost the same as that for an amorphous Co70.5Fe4.5Si10B15 alloy with zero magnetostriction. In the frequency range of 10 to 300 kHz, the core loss for the bcc alloy is slightly smaller than the Co base amorphous which has been used as core material in high‐frequency transformers. Furthermore, the core losses of the nanocrystalline Fe86Zr7B6Cu1 alloy also were found to have high stability against thermal aging. Thus, nanocrystalline bcc Fe‐Zr‐B‐Cu alloys with the advantages of high Bs, high μe, and low core loss is expected to be used as a core material in various transformers.
KW - core loss
KW - Fe‐Zr‐B alloy
KW - Nanocrystalline materials
KW - soft magnetic properties
UR - http://www.scopus.com/inward/record.url?scp=0027710367&partnerID=8YFLogxK
U2 - 10.1002/eej.4391130701
DO - 10.1002/eej.4391130701
M3 - Article
AN - SCOPUS:0027710367
SN - 0424-7760
VL - 113
SP - 1
EP - 10
JO - Electrical Engineering in Japan
JF - Electrical Engineering in Japan
IS - 7
ER -