TY - JOUR
T1 - Machine-learning prediction of cancer survival
T2 - A retrospective study using electronic administrative records and a cancer registry
AU - Gupta, Sunil
AU - Tran, Truyen
AU - Luo, Wei
AU - Phung, Dinh
AU - Kennedy, Richard Lee
AU - Broad, Adam
AU - Campbell, David
AU - Kipp, David
AU - Singh, Madhu S
AU - Khasraw, Mustafa
AU - Matheson, Leigh
AU - Ashley, David M
AU - Venkatesh, Svetha
PY - 2014
Y1 - 2014
N2 - Objectives: Using the prediction of cancer outcome as a model, we have tested the hypothesis that through analysing routinely collected digital data contained in an electronic administrative record (EAR), using machine-learning techniques, we could enhance conventional methods in predicting clinical outcomes. Setting: A regional cancer centre in Australia. Participants: Disease-specific data from a purpose-built cancer registry (Evaluation of Cancer Outcomes (ECO)) from 869 patients were used to predict survival at 6, 12 and 24 months. The model was validated with data from a further 94 patients, and results compared to the assessment of five specialist oncologists. Machine-learning prediction using ECO data was compared with that using EAR and a model combining ECO and EAR data. Primary and secondary outcome measures: Survival prediction accuracy in terms of the area under the receiver operating characteristic curve (AUC). Results: The ECO model yielded AUCs of 0.87 (95% CI 0.848 to 0.890) at 6 months, 0.796 (95% CI 0.774 to 0.823) at 12 months and 0.764 (95% CI 0.737 to 0.789) at 24 months. Each was slightly better than the performance of the clinician panel. The model performed consistently across a range of cancers, including rare cancers. Combining ECO and EAR data yielded better prediction than the ECO-based model (AUCs ranging from 0.757 to 0.997 for 6 months, AUCs from 0.689 to 0.988 for 12 months and AUCs from 0.713 to 0.973 for 24 months). The best prediction was for genitourinary, head and neck, lung, skin, and upper gastrointestinal tumours. Conclusions: Machine learning applied to information from a disease-specific (cancer) database and the EAR can be used to predict clinical outcomes. Importantly, the approach described made use of digital data that is already routinely collected but underexploited by clinical health systems.
AB - Objectives: Using the prediction of cancer outcome as a model, we have tested the hypothesis that through analysing routinely collected digital data contained in an electronic administrative record (EAR), using machine-learning techniques, we could enhance conventional methods in predicting clinical outcomes. Setting: A regional cancer centre in Australia. Participants: Disease-specific data from a purpose-built cancer registry (Evaluation of Cancer Outcomes (ECO)) from 869 patients were used to predict survival at 6, 12 and 24 months. The model was validated with data from a further 94 patients, and results compared to the assessment of five specialist oncologists. Machine-learning prediction using ECO data was compared with that using EAR and a model combining ECO and EAR data. Primary and secondary outcome measures: Survival prediction accuracy in terms of the area under the receiver operating characteristic curve (AUC). Results: The ECO model yielded AUCs of 0.87 (95% CI 0.848 to 0.890) at 6 months, 0.796 (95% CI 0.774 to 0.823) at 12 months and 0.764 (95% CI 0.737 to 0.789) at 24 months. Each was slightly better than the performance of the clinician panel. The model performed consistently across a range of cancers, including rare cancers. Combining ECO and EAR data yielded better prediction than the ECO-based model (AUCs ranging from 0.757 to 0.997 for 6 months, AUCs from 0.689 to 0.988 for 12 months and AUCs from 0.713 to 0.973 for 24 months). The best prediction was for genitourinary, head and neck, lung, skin, and upper gastrointestinal tumours. Conclusions: Machine learning applied to information from a disease-specific (cancer) database and the EAR can be used to predict clinical outcomes. Importantly, the approach described made use of digital data that is already routinely collected but underexploited by clinical health systems.
UR - http://www.scopus.com/inward/record.url?scp=84897484693&partnerID=8YFLogxK
U2 - 10.1136/bmjopen-2013-004007
DO - 10.1136/bmjopen-2013-004007
M3 - Article
C2 - 24643167
AN - SCOPUS:84897484693
SN - 2044-6055
VL - 4
JO - BMJ Open
JF - BMJ Open
IS - 3
M1 - e004007
ER -