Projects per year
Abstract
In previous studies, a triglyceride (TG) mimetic prodrug of the model immunomodulator mycophenolic acid (MPA) was shown to significantly enhance lymphatic transport of MPA-related species in the rat. The rat gastrointestinal tract, however, is somewhat different from that in higher order species such as dogs and humans and may underestimate lymphatic transport. Here the effectiveness of the prodrug strategy has been examined in conscious greyhound dogs, the GI physiology of which is more representative of that in humans. The bioavailability and lymphatic transport of free MPA and total MPA related materials were examined following oral administration of the parent drug (MPA) and the prodrug (2-MPA-TG) to both thoracic lymph duct cannulated and intact (noncannulated) greyhound dogs. The enrichment of free MPA in lymph nodes and lymph-derived lymphocytes was also determined to examine the efficiency of drug targeting to potential sites of action within the lymph. Via biochemical integration into a series of site-specific metabolic processes, the prodrug markedly increased (288-fold) lymphatic transport of total MPA related material (present as re-esterified 2-MPA-TG) when compared to the parent MPA and the extent of lymphatic transport was significantly greater in the dog (36.4% of the dose recovered in lymph) when compared to the previous data in the rat (13.4% of the dose). Conversion from 2-MPA-TG derivatives to parent MPA occurred in vivo, resulting in a marked increase in MPA concentrations in lymph nodes (5-6-fold) and lymph lymphocytes (21-fold), when compared to animals administered the parent drug. In conclusion, the data demonstrate that the TG prodrug of MPA facilitates efficient delivery of MPA to the lymphatic system in dogs and suggest that the TG prodrug strategy may more effectively facilitate targeted delivery in large animals than in rats.
Original language | English |
---|---|
Pages (from-to) | 3351-3361 |
Number of pages | 11 |
Journal | Molecular Pharmaceutics |
Volume | 13 |
Issue number | 10 |
DOIs | |
Publication status | Published - 3 Oct 2016 |
Keywords
- lymphatic transport
- lymphocyte targeting
- mycophenolic acid
- prodrug
- triglyceride mimetic
Projects
- 1 Finished
-
ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
Davis, T., Boyd, B., Bunnett, N., Porter, C., Caruso, F., Kent, S., Thordarson, P., Kearnes, M., Gooding, J., Kavallaris, M., Thurecht, K., Whittaker, A. K., Parton, R., Corrie, S. R., Johnston, A., McGhee, J., Greguric, I. D., Stevens, M. M., Lewis, J. S., Lee, D. S., Alexander, C., Dawson, K., Hawker, C., Haddleton, D., Thierry, B., Prestidge, C. A., Meyer, A., Jones-Jayasinghe, N., Voelcker, N., Nann, T. & McLean, K.
Australian Research Council (ARC), Monash University, University of Melbourne, University of New South Wales (UNSW), University of Queensland , University of South Australia, Monash University – Internal Faculty Contribution, University of Wisconsin Madison, Memorial Sloan Kettering Cancer Center, University of California System, University College Dublin, Imperial College London, University of Warwick, SungKyunKwan University, Australian Nuclear Science and Technology Organisation (ANSTO) , University of Nottingham
30/06/14 → 29/06/21
Project: Research