TY - JOUR
T1 - Loss of betaglycan contributes to the malignant properties of human granulosa tumor cells
AU - Bilandzic, Maree
AU - Chu, Simon
AU - Farnworth, Paul G.
AU - Harrison, Craig
AU - Nicholls, Peter
AU - Wang, Yao
AU - Escalona, Ruth M.
AU - Fuller, Peter J.
AU - Findlay, Jock K.
AU - Stenvers, Kaye L.
PY - 2009/4
Y1 - 2009/4
N2 - Betaglycan is a type III TGFβ receptor that modulates cellular sensitivity to inhibins and TGFβ. Previous studies have suggested that betaglycan acts as a tumor suppressor in certain human epithelial cancers. However, the roles of betaglycan in ovarian granulosa cell tumors (GCTs) are poorly understood. The objective of this study was to determine whether human GCTs exhibit betaglycan expression and, if so, what impact this receptor has on tumor biology. Real-time PCR was used to quantify betaglycan transcripts in human GCTs (n = 17) and normal premenopausal ovaries (n = 11). This analysis established that GCTs exhibited a significant 2-fold lower mean betaglycan mRNA level as compared with the normal ovary (P <0.05). Similarly, two human GCT cell lines, KGN and COV434, exhibited low betaglycan expression and poor responsiveness to TGFβ and inhibin A in luciferase reporter assays, which was restored by stable transfection of wild-type betaglycan. Betaglycan significantly increased the adhesion of COV434 (P <0.05) and KGN (P <0.0001) cells, decreased cellular invasion through Matrigel, and inhibited wound healing. Expression of mutant forms of betaglycan that are defective in TGFβ and/or inhibin binding in each GCT cell line revealed that the inhibitory effects of betaglycan on wound healing were most strongly linked to the inhibin-binding region of betaglycan. Furthermore, knockdown of INHA mRNA expression abrogated the betaglycan-mediated inhibition of wound healing and invasion, whereas both INHA silencing and TGFβ neutralization abolished the betaglycan-mediated increase in adhesion to substrate. These data suggest that loss of betaglycan contributes to the pathogenesis of GCTs. (Molecular Endocrinology 23: 539-548, 2009)
AB - Betaglycan is a type III TGFβ receptor that modulates cellular sensitivity to inhibins and TGFβ. Previous studies have suggested that betaglycan acts as a tumor suppressor in certain human epithelial cancers. However, the roles of betaglycan in ovarian granulosa cell tumors (GCTs) are poorly understood. The objective of this study was to determine whether human GCTs exhibit betaglycan expression and, if so, what impact this receptor has on tumor biology. Real-time PCR was used to quantify betaglycan transcripts in human GCTs (n = 17) and normal premenopausal ovaries (n = 11). This analysis established that GCTs exhibited a significant 2-fold lower mean betaglycan mRNA level as compared with the normal ovary (P <0.05). Similarly, two human GCT cell lines, KGN and COV434, exhibited low betaglycan expression and poor responsiveness to TGFβ and inhibin A in luciferase reporter assays, which was restored by stable transfection of wild-type betaglycan. Betaglycan significantly increased the adhesion of COV434 (P <0.05) and KGN (P <0.0001) cells, decreased cellular invasion through Matrigel, and inhibited wound healing. Expression of mutant forms of betaglycan that are defective in TGFβ and/or inhibin binding in each GCT cell line revealed that the inhibitory effects of betaglycan on wound healing were most strongly linked to the inhibin-binding region of betaglycan. Furthermore, knockdown of INHA mRNA expression abrogated the betaglycan-mediated inhibition of wound healing and invasion, whereas both INHA silencing and TGFβ neutralization abolished the betaglycan-mediated increase in adhesion to substrate. These data suggest that loss of betaglycan contributes to the pathogenesis of GCTs. (Molecular Endocrinology 23: 539-548, 2009)
UR - http://www.scopus.com/inward/record.url?scp=64749105293&partnerID=8YFLogxK
U2 - 10.1210/me.2008-0300
DO - 10.1210/me.2008-0300
M3 - Article
C2 - 19164448
AN - SCOPUS:64749105293
SN - 0888-8809
VL - 23
SP - 539
EP - 548
JO - Molecular Endocrinology
JF - Molecular Endocrinology
IS - 4
ER -