Longitudinal changes of focal cortical glucose hypometabolism in adults with chronic drug resistant temporal lobe epilepsy

Catherine Sharpe, Benjamin Sinclair, Patrick Kwan, Rodney J. Hicks, Terence J. O’Brien, Lucy Vivash

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

A high proportion of patients with drug-resistant temporal lobe epilepsy (TLE) show focal relative hypometabolism in the region of the epileptogenic zone on [18F]-Fluorodeoxyglucose positron emission tomography (FDG PET). However, whether focal (hypo)metabolism changes over time has not been well studied. We analysed repeated [18F]-FDG PET scans of patients with TLE to determine longitudinal changes in glucose metabolism. Adults (n = 16; 9 female, 7 male) diagnosed with drug resistant chronic TLE were assessed. Each patient had two [18F]-FDG PET scans that were 2–95 months apart. Region-of-interest analysis was performed on MR images onto which PET scans were coregistered to determine the relative [18F]-FDG uptake (normalised to pons) in the bilateral hippocampi and temporal lobes. Statistical Parametric Mapping analysis investigated global voxel-wise changes in relative metabolism between timepoints. Normalised [18F]-FDG uptake did not change with time in the ipsilateral (baseline 1.14 ± 0.03, follow-up 1.19 ± -0.04) or contralateral hippocampus (baseline 1.18 ± 0.03, follow-up 1.19 ± 0.03). Uptake in the temporal neocortex also remained stable (ipsilateral baseline 1.35 ± 0.03, follow-up 1.30 ± 0.04; contralateral baseline 1.38 ± 0.04, follow-up 1.33 ± 0.03). The was no relationship between change in uptake on the repeated scans and the time between the scans. SPM analysis showed increases in metabolism in the ipsilateral temporal lobe in 2/16 patients. No areas of decreased metabolism concordant to the epileptogenic zone were identified. [18F]-FDG uptake showed no significant changes over time in patients with drug-resistant TLE. This suggests that repeating FDG-PET scans in patients with subtle or no hypometabolism is of low clinical yield.

Original languageEnglish
Pages (from-to)2795–2803
Number of pages9
JournalBrain Imaging and Behavior
Volume15
Issue number6
DOIs
Publication statusPublished - Dec 2021

Keywords

  • FDG
  • Glucose hypometabolism
  • Positron emission tomography
  • Temporal lobe epilepsy
  • []fluorodeoxyglucose

Cite this