Longer Leukocyte Telomeres Are Associated with Ultra-Endurance Exercise Independent of Cardiovascular Risk Factors

Joshua Denham, Christopher P. Nelson, Brendan J. O'Brien, Scott A. Nankervis, Matthew Denniff, Jack T. Harvey, Francine Z. Marques, Veryan Codd, Ewa Zukowska-Szczechowska, Nilesh J. Samani, Maciej Tomaszewski, Fadi J. Charchar

Research output: Contribution to journalArticleResearchpeer-review

60 Citations (Scopus)

Abstract

Telomere length is recognized as a marker of biological age, and shorter mean leukocyte telomere length is associated with increased risk of cardiovascular disease. It is unclear whether repeated exposure to ultra-endurance aerobic exercise is beneficial or detrimental in the long-term and whether it attenuates biological aging. We quantified 67 ultra-marathon runners' and 56 apparently healthy males' leukocyte telomere length (T/S ratio) using real-time quantitative PCR. The ultra-marathon runners had 11% longer telomeres (T/S ratio) than controls (ultra-marathon runners: T/S ratio = 3.5±0.68, controls: T/S ratio = 3.1±0.41; β = 0.40, SE = 0.10, P = 1.4×10-4) in age-adjusted analysis. The difference remained statistically significant after adjustment for cardiovascular risk factors (P = 2.2×10-4). The magnitude of this association translates into 16.2±0.26 years difference in biological age and approximately 324-648bp difference in leukocyte telomere length between ultra-marathon runners and healthy controls. Neither traditional cardiovascular risk factors nor markers of inflammation/adhesion molecules explained the difference in leukocyte telomere length between ultra-marathon runners and controls. Taken together these data suggest that regular engagement in ultra-endurance aerobic exercise attenuates cellular aging.

Original languageEnglish
Article numbere69377
JournalPLoS ONE
Volume8
Issue number7
DOIs
Publication statusPublished - 31 Jul 2013
Externally publishedYes

Cite this