Long-term stability estimates and existence of a global attractor in a finite element approximation of the Navier Stokes equations with numerical subgrid scale modeling

Santiago Badia, Ramon Codina, Juan Vicente Gutiérrez-Santacreu

Research output: Contribution to journalArticleResearchpeer-review

18 Citations (Scopus)


Variational multiscale methods lead to stable finite element approximations of the Navier-Stokes equations, dealing with both the indefinite nature of the system (pressure stability) and the velocity stability loss for high Reynolds numbers. These methods enrich the Galerkin formulation with a subgrid component that is modeled. In fact, the effect of the subgrid scale on the captured scales has been proved to dissipate the proper amount of energy needed to approximate the correct energy spectrum. Thus, they also act as effective large-eddy simulation turbulence models and allow one to compute flows without the need to capture all the scales in the system. In this article, we consider a dynamic subgrid model that enforces the subgrid component to be orthogonal to the finite element space in the L2 sense. We analyze the long-term behavior of the algorithm, proving the existence of appropriate absorbing sets and a compact global attractor. The improvements with respect to a finite element Galerkin approximation are the long-term estimates for the subgrid component, which are translated to effective pressure and velocity stability. Thus, the stabilization introduced by the subgrid model into the finite element problem does not deteriorate for infinite time intervals of computation.

Original languageEnglish
Pages (from-to)1013-1037
Number of pages25
JournalSIAM Journal on Numerical Analysis
Issue number3
Publication statusPublished - 1 Sept 2010
Externally publishedYes


  • Absorbing set
  • Global attractor
  • Long-term stability
  • Navier-Stokes problem
  • Stabilized finite element methods
  • Subgrid scales

Cite this