Linking RAGE and Nox in diabetic micro- and macrovascular complications

C. Koulis, A. M D Watson, S. P. Gray, K. A. Jandeleit-Dahm

Research output: Contribution to journalReview ArticleResearchpeer-review

44 Citations (Scopus)


Diabetes-associated micro- and macrovascular complications contribute to the increased morbidity and mortality observed in diabetes. Diabetes leads to accelerated generation of advanced glycation end products (AGEs) and activation of their receptor, RAGE, as well as activation of NAD(P)H oxidase (Nox), an enzyme dedicated to the production of reactive oxygen species, which ultimately leads to a pro-inflammatory environment characterised by oxidative stress. This review outlines the current evidence about the contribution of and interaction between the AGE-RAGE axis and Nox derived ROS formation in the development and progression of micro- and macrovascular diabetic complications (especially in atherosclerosis and nephropathy), and the mechanisms by which this occurs. We also outline novel treatments targeting the AGE-RAGE axis and specific Nox isoforms, which hold great promise in attenuating the development of diabetes-associated atherosclerosis and diabetic nephropathy.

Original languageEnglish
Pages (from-to)272-281
Number of pages10
JournalDiabetes & Metabolism
Issue number4
Publication statusPublished - 1 Sep 2015


  • Atherosclerosis
  • Diabetes mellitus
  • Glycation
  • NADPH oxidases
  • Nephropathy
  • Oxidative stress
  • RAGE
  • Vascular complications

Cite this