Abstract
Efficient waveguiding inside low refractive index media is of key importance for a great variety of applications that demand strong light–matter interaction on small geometric footprints. Here, we demonstrate efficient light guidance in single-defect dual-ring light cages over millimeter distances that are integrated on silicon chips via direct laser writing. The cages consist of two rings of high aspect-ratio polymer strands (length 5 mm, aspect ratio >1000) hexagonally arranged around a hollow core. Clear-core mode formation via the photonic band gap effect is observed, with the experiments showing pronounced transmission bands with fringe and polarization contrasts of >20 dB and >15 dB, respectively. Numerical simulations confirm our experiments and reveal the dual-ring arrangement to be the optimal geometry within the light cage concept. Particularly, the side-wise access to the core regions and the chip integration makes the light cage concept attractive for a great number of fields such as bioanalytics or quantum technology.
Original language | English |
---|---|
Pages (from-to) | 4016-4019 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 44 |
Issue number | 16 |
DOIs | |
Publication status | Published - 15 Aug 2019 |
Externally published | Yes |