Leukocyte telomere length in the neonatal offspring of mothers with gestational and pre-gestational diabetes

Christopher Gilfillan, Pratyusha Naidu, Florence Gunawan, Fadwa Hassan, Pei Tian, Ngaire Elwood

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)


Aims: Telomeres undergo shortening with cell division, accelerated by increased oxidative stress. We aimed to demonstrate shortened telomeres in the offspring of mothers who have diabetes as a consequence of exposure to increased oxidative stress during intrauterine development. Methods: We examined the level of glycaemia (glucose, HbA1c, fructosamine), oxidative stress (lipid peroxidation) and the levels of antioxidant enzymes (Superoxide dismutase (SOD) and Selenium dependent glutathione peroxidase) and correlate these findings with mean telomere length (TL) in maternal and foetal blood in groups of pregnant women with pre-gestational diabetes (PGD), gestational diabetes (GD) and a euglycaemic control group. Results: Foetal and maternal glucose, maternal HbA1c, and foetal insulin and C-peptide were higher in the PGD group with the GD group being intermediate. Markers of oxidative stress did not vary between groups with the exception of foetal SOD activity that was highest in the GD group. There were no detectable differences in maternal or foetal TL between study groups. An exploratory analysis looking at correlations between glycaemic and oxidative stress parameters and TL revealed a negative correlation between maternal and foetal glucose and TL across the whole study population. This relationship held for the short-term marker of glycaemic control, fructosamine. Conclusions: We were unable to show significant telomere shortening in the offspring of mothers with PGD or GD. Exploratory analysis revealed a relationship between foetal TL and short-term glycaemia particularly in PGD. It is possible that increased telomerase activity can compensate for long-term increased oxidative stress but not for short-term dysglycaemia.

Original languageEnglish
Article numbere0163824
Number of pages10
JournalPLoS ONE
Issue number10
Publication statusPublished - 13 Oct 2016

Cite this