Lensless imaging using broadband X-ray sources

Brian Abbey, Lachlan W. Whitehead, Harry M. Quiney, David J. Vine, Guido A. Cadenazzi, Clare A. Henderson, Keith A. Nugent, Eugeniu Balaur, Corey T. Putkunz, Andrew G. Peele, G. J. Williams, I. McNulty

Research output: Contribution to journalArticleResearchpeer-review

114 Citations (Scopus)


High-resolution X-ray imaging techniques using optical elements such as zone plates are widely used for viewing the internal structure of samples in exquisite detail. The resolution attainable is ultimately limited by the manufacturing tolerances for the optics. Combining ideas from crystallography and holography, this limit may be surpassed by the method of coherent diffractive imaging (CDI). Although CDI shows particular promise in applications involving X-ray free-electron lasers, it is also emerging as an important new technique for imaging at third-generation synchrotrons. The limited coherent output of these sources, however, is a significant barrier to obtaining shorter exposure times. A fundamental assumption of coherent diffractive imaging is that the incident light is well-approximated by a single optical frequency. In this Letter, we demonstrate the first experimental realization of 'polyCDI', using a broadband source to achieve a factor of 60 reduction in the exposure time over quasi-monochromatic coherent diffractive imaging.

Original languageEnglish
Pages (from-to)420-424
Number of pages5
JournalNature Photonics
Issue number7
Publication statusPublished - Jul 2011
Externally publishedYes

Cite this