Projects per year
Abstract
Polymer-based nanoparticle (NP) morphology and surface chemistry are important factors to consider when it comes to their stability, biocompatibility, and biodistribution. Poly(2-oxazoline)s and poly(2-oxazine)s have been shown to exhibit favourable physicochemical properties for use in polymer-based formulations in the context of drug delivery, as have rod-shaped NP morphologies. However, the formation of rod-shaped NPs with a high degree of morphological consistency often represents a synthetic challenge, and is yet to be reported with the use of poly(2-oxazine)s. Herein, we show the first poly(2-methyl-2-oxazine)-based rod-like length-controlled NPs, obtained through heat-induced seeded crystallisation-driven self-assembly (CDSA) of novel poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazine) (PiPrOx-b-PMeOz) block copolymers (BCPs). PiPrOx45-b-PMeOz47, and PiPrOx91-b-PMeOz74 are synthesised to probe the relationship between total degree of polymerisation (DP) and seeded CDSA kinetics. To this end, a novel method for the optimisation of seeded CDSA via1H nuclear magnetic resonance spectroscopy is used, determining the differing rates of spontaneous and seeded crystallisation of these polymers in situ. PiPrOx-b-PMeOz NPs are subsequentially contrasted against previously reported poly(2-methyl-2-oxazoline)-block-poly(2-isopropyl-2-oxazoline) (PMeOx-b-PiPrOx) NPs in vitro with regard to their bio-nano interactions. PiPrOx-b-PMeOz NPs demonstrate high biocompatibility, and increased cellular association relative to PiPrOx-b-PMeOx NPs, independent of their total DP. This work demonstrates a significant improvement in the optimisation of heat-induced seeded CDSA and highlights PMeOz as a biocompatible polymer material with potential for use in a therapeutic context alongside materials such as PMeOx and poly(ethylene glycol) (PEG).
Original language | English |
---|---|
Pages (from-to) | 2916-2929 |
Number of pages | 14 |
Journal | Polymer Chemistry |
Volume | 14 |
Issue number | 24 |
DOIs | |
Publication status | Published - 28 Jun 2023 |
-
-
High Resolution Atomic Force Microscopy Facility for Bionanotechnology
Aguilar, M., Ball, A., Boyd, B., Drummond, C., Dunstone, M., Forsythe, J., Fox, K., Greaves, T., Lithgow, T., Ramsland, P. & Separovic, F.
Australian Research Council (ARC), RMIT University, University of Melbourne, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution
9/06/17 → 11/10/17
Project: Research
Equipment
-
Centre for Electron Microscopy (MCEM)
Flame Sorrell (Manager) & Peter Miller (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility