TY - JOUR
T1 - Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water
AU - Ricco, Raffaele
AU - Konstas, Kristina
AU - Styles, Mark J.
AU - Richardson, Joseph J.
AU - Babarao, Ravichandar
AU - Suzuki, Kiyonori
AU - Scopece, Paolo
AU - Falcaro, Paolo
PY - 2015
Y1 - 2015
N2 - The recent combination of Metal-Organic Frameworks (MOFs) and magnetic nanoparticles has shown their potential as a composite material in practical applications including drug delivery, catalysis and pollutant sequestration. Here, we report for the first time the preparation of a robust magnetic nanocomposite material based on an aluminium MOF (MIL-53) and iron oxide nanoparticles for the uptake of lead(II) ions. Different aminofunctionalized MIL-53 MOFs were prepared by increasing the 2-aminoterephthalic/ terephthalic acid ratio. The composite materials were tested to determine the sequestration capability of heavy metals from various solvents (methanol, DMSO and water), pH (2, 7, 12) and a range of Pb(II) concentrations (10–8000 ppm). The magnetic composite based on MIL-53 showed remarkable capacity to sequester Pb(II) ions from water (up to 492.4 mg g1 of composite), the highest recorded for a MOF sorbent system to date. While the MOF played a crucial role in the efficient heavy metal uptake, the magnetic nanoparticles allowed the prompt collection of the sorbent from solution. The triggered release of Pb(II) was investigated using an alternating magnetic field. The exceptional adsorption capacity and the response to the magnetic field make this class of innovative functional material a promising candidate for environmental remediation technologies.
AB - The recent combination of Metal-Organic Frameworks (MOFs) and magnetic nanoparticles has shown their potential as a composite material in practical applications including drug delivery, catalysis and pollutant sequestration. Here, we report for the first time the preparation of a robust magnetic nanocomposite material based on an aluminium MOF (MIL-53) and iron oxide nanoparticles for the uptake of lead(II) ions. Different aminofunctionalized MIL-53 MOFs were prepared by increasing the 2-aminoterephthalic/ terephthalic acid ratio. The composite materials were tested to determine the sequestration capability of heavy metals from various solvents (methanol, DMSO and water), pH (2, 7, 12) and a range of Pb(II) concentrations (10–8000 ppm). The magnetic composite based on MIL-53 showed remarkable capacity to sequester Pb(II) ions from water (up to 492.4 mg g1 of composite), the highest recorded for a MOF sorbent system to date. While the MOF played a crucial role in the efficient heavy metal uptake, the magnetic nanoparticles allowed the prompt collection of the sorbent from solution. The triggered release of Pb(II) was investigated using an alternating magnetic field. The exceptional adsorption capacity and the response to the magnetic field make this class of innovative functional material a promising candidate for environmental remediation technologies.
UR - http://pubs.rsc.org.ezproxy.lib.monash.edu.au/en/content/articlepdf/2015/ta/c5ta04154f
U2 - 10.1039/c5ta04154f
DO - 10.1039/c5ta04154f
M3 - Article
SN - 2050-7488
VL - 3
SP - 1
EP - 10
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 39
ER -