TY - JOUR
T1 - Late-twentieth-century emergence of the El Nino propagation asymmetry and future projections
AU - Santoso, Agus
AU - McGregor, Shayne
AU - Jin, Fei-Fei
AU - Cai, Wenju
AU - England, Matthew Heathcote
AU - An, Soon-Il
AU - McPhaden, Michael James
AU - Guilyardi, Eric
PY - 2013
Y1 - 2013
N2 - The El Nino/Southern Oscillation (ENSO) is the Earth s most prominent source of interannual climate variability, exerting profound worldwide effects. Despite decades of research, its behaviour continues to challenge scientists. In the eastern equatorial Pacific Ocean, the anomalously cool sea surface temperatures (SSTs) found during La Nina events and the warm waters of modest El Nino events both propagate westwards, as in the seasonal cycle. In contrast, SST anomalies propagate eastwards during extreme El Nino events, prominently in the post-1976 period, spurring unusual weather events worldwide with costly consequences. The cause of this propagation asymmetry is currently unknown. Here we trace the cause of the asymmetry to the variations in upper ocean currents in the equatorial Pacific, whereby the westward-flowing currents are enhanced during La Nina events but reversed during extreme El Nino events. Our results highlight that propagation asymmetry is favoured when the westward mean equatorial currents weaken, as is projected to be the case under global warming. By analysing past and future climate simulations of an ensemble of models with more realistic propagation, we find a doubling in the occurrences of El Nino events that feature prominent eastward propagation characteristics in a warmer world. Our analysis thus suggests that more frequent emergence of propagation asymmetry will be an indication of the Earth s warming climate. (c) 2013 Macmillan Publishers Limited. All rights reserved.
AB - The El Nino/Southern Oscillation (ENSO) is the Earth s most prominent source of interannual climate variability, exerting profound worldwide effects. Despite decades of research, its behaviour continues to challenge scientists. In the eastern equatorial Pacific Ocean, the anomalously cool sea surface temperatures (SSTs) found during La Nina events and the warm waters of modest El Nino events both propagate westwards, as in the seasonal cycle. In contrast, SST anomalies propagate eastwards during extreme El Nino events, prominently in the post-1976 period, spurring unusual weather events worldwide with costly consequences. The cause of this propagation asymmetry is currently unknown. Here we trace the cause of the asymmetry to the variations in upper ocean currents in the equatorial Pacific, whereby the westward-flowing currents are enhanced during La Nina events but reversed during extreme El Nino events. Our results highlight that propagation asymmetry is favoured when the westward mean equatorial currents weaken, as is projected to be the case under global warming. By analysing past and future climate simulations of an ensemble of models with more realistic propagation, we find a doubling in the occurrences of El Nino events that feature prominent eastward propagation characteristics in a warmer world. Our analysis thus suggests that more frequent emergence of propagation asymmetry will be an indication of the Earth s warming climate. (c) 2013 Macmillan Publishers Limited. All rights reserved.
UR - http://www.nature.com/nature/journal/v504/n7478/pdf/nature12683.pdf
U2 - 10.1038/nature12683
DO - 10.1038/nature12683
M3 - Article
SN - 0028-0836
VL - 504
SP - 126
EP - 130
JO - Nature
JF - Nature
IS - 7478
ER -