Abstract
We report on a facile interfacial self-assembly approach to fabricate large-scale metal nanoparticle superlattice sheets from nonspherical core-shell nanoparticles, which exhibited reversible plasmonic responses to repeated mechanical stretching. Monodisperse Au@Ag nanocubes (NCs) and Au@Ag nanocuboids (NBs) could be induced to self-assembly at the hexane/water interface, forming uniform superlattices up to at least 13 cm2 and giving rise to mirror-like reflection. Such large-area mirror-like superlattice sheets exhibited reversible plasmonic responses to external mechanical strains. Under stretching, the dominant plasmonic resonance peak for both NB and NC superlattice sheets shifted to blue, following a power-law function of the applied strain. Interestingly, the power-law exponent (or the decay rate) showed a strong shape dependence, where a faster rate was observed for NB superlattice sheets than that for NC superlattice sheets.
Original language | English |
---|---|
Pages (from-to) | 26816 - 26824 |
Number of pages | 9 |
Journal | Journal of Physical Chemistry C |
Volume | 118 |
Issue number | 46 |
DOIs | |
Publication status | Published - 2014 |
Equipment
-
Centre for Electron Microscopy (MCEM)
Flame Sorrell (Manager) & Peter Miller (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility