Projects per year
Abstract
Mixed dimensional van der Waals heterostructures (MD-vdWhs) open a huge potential to fabricate novel devices based on numerous metamaterials with superior magnetotransport properties. In conventional vdWhs, a variety of two dimensional (2D) layers has been stacked together to demonstrate vdWhs with phenomenal functionalities. However, fabricating 2D materials and their vdWhs over large areas with excellent magnetoresistance (MR) characteristics remains a major challenge. Graphene foam (GF), a 3D form of Dirac graphene continued to gather much attention for magnetotransport applications due to its gram-scale/cost effective production and better magnetoresistance properties. Also, many combinations could be possible with GF to create numerous MD-vdWhs with hybrid functionalities, potentially giving access to explore novel devices with unique hybrid properties. Herein, we demonstrate MD-vdWhs (2D+3D) of GF with molybdenum disulfide (MoS2) to investigate magnetotransport properties. Remarkably, MR of GF is increased from ∼130% to ∼210% at 5 K under an applied magnetic field of 5 T by fabricating its MD-vdWhs with MoS2. Our systematic investigations show that distinct magnetotransport properties in GF/MoS2 vdWhs are strongly correlated to the enhancement in spin-orbit-coupling of the MD-vdWhs. Together, these results present a promising path toward the fabrication of future sensing and memory devices.
Original language | English |
---|---|
Pages (from-to) | 648-655 |
Number of pages | 8 |
Journal | Carbon |
Volume | 159 |
DOIs | |
Publication status | Published - 15 Apr 2020 |
Keywords
- Chemical vapor deposition
- Graphene foam
- Magnetoresistance
- Mixed-dimensional heterostructures
- Molybdenum disulfide
- Spin-orbit coupling
Projects
- 1 Active
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M., Bao, Q., Culcer, D., Davis, M., Davis, J. A., Hamilton, A., Helmerson, K., Kalantar-Zadeh, K., Klochan, O., Medhekar, N., Ostrovskaya, E., Parish, M., Schiffrin, A., Seidel, J., Sushkov, O., Valanoor, N., Vale, C., Wang, X., Wang, L., Galitskiy, V., Gurarie, V., Hannon, J., Höfling, S., Hone, J., Rule, K. C., Krausz, F., Littlewood, P., MacDonald, A., Neto, A., Oezyilmaz, B., Paglione, J., Phillips, W., Refael, G., Spielman, I., Tadich, A., Xue, Q., Cole, J., Perali, A., Neilson, D., Lin, H., Sek, G., Gaston, N., Hodgkiss, J. M., Tang, M., Karel, J., Nguyen, T., Adam, S. & Granville, S.
Australian Research Council (ARC), Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales, Australian National University , RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research