Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure

Qile Li, Chi Xuan Trang, Weikang Wu, Jinwoong Hwang, David Cortie, Nikhil Medhekar, Sung Kwan Mo, Shengyuan A. Yang, Mark T. Edmonds

Research output: Contribution to journalArticleResearchpeer-review

19 Citations (Scopus)

Abstract

Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in topological insulators via proximity to a magnetic material offers a promising pathway toward achieving the QAH effect at a high temperature for lossless transport applications. One promising architecture involves a sandwich structure comprising two single-septuple layers (1SL) of MnBi2Te4 (a 2D ferromagnetic insulator) with ultrathin few quintuple layer (QL) Bi2Te3 in the middle, and it is predicted to yield a robust QAH insulator phase with a large bandgap greater than 50 meV. Here, the growth of a 1SL MnBi2Te4/4QL Bi2Te3/1SL MnBi2Te4 heterostructure via molecular beam epitaxy is demonstrated and the electronic structure probed using angle-resolved photoelectron spectroscopy. Strong hexagonally warped massive Dirac fermions and a bandgap of 75 ± 15 meV are observed. The magnetic origin of the gap is confirmed by the observation of the exchange-Rashba effect, as well as the vanishing bandgap above the Curie temperature, in agreement with density functional theory calculations. These findings provide insights into magnetic proximity effects in topological insulators and reveal a promising platform for realizing the QAH effect at elevated temperatures.

Original languageEnglish
Article number2107520
Number of pages10
JournalAdvanced Materials
Volume34
Issue number21
DOIs
Publication statusPublished - 26 May 2022

Keywords

  • heterostructure thin films
  • lossless transport
  • magnetic proximity
  • magnetic topological insulators
  • quantum anomalous Hall insulators

Cite this