TY - JOUR
T1 - Large freshwater phages with the potential to augment aerobic methane oxidation
AU - Chen, Lin Xing
AU - Méheust, Raphaël
AU - Crits-Christoph, Alexander
AU - McMahon, Katherine D.
AU - Nelson, Tara Colenbrander
AU - Slater, Gregory F.
AU - Warren, Lesley A.
AU - Banfield, Jillian F.
N1 - Funding Information:
We thank M. J. Mayr for permission to use the metagenomic and metatranscriptomic datasets from Lake Rotsee16 for analyses in the present study. We thank An et al.25, Saidi-Mehrabad et al.26, Tan et al.27 and Rochman et al.28 as the generators of publicly available oil sands-related datasets that were reanalysed in the present study. We thank R. Edwards for help in attempting to retrieve highly similar phage genomes in NCBI SRA datasets. The study was supported by the NSERC Canada and Syncrude Canada (grant no. CRDPJ 403361-10). We also thank the Chan Zuckerberg Biohub and the Innovative Genomics Institute at University of California, Berkeley for funding support. K.D.M. received funding from the US National Science Foundation Microbial Observatories program (no. MCB-0702395), the Long-Term Ecological Research Program (no. NTL-LTER DEB-1440297) and an INSPIRE award (no. DEB-1344254).
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host–phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.
AB - There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host–phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.
UR - http://www.scopus.com/inward/record.url?scp=85089738602&partnerID=8YFLogxK
U2 - 10.1038/s41564-020-0779-9
DO - 10.1038/s41564-020-0779-9
M3 - Article
C2 - 32839536
AN - SCOPUS:85089738602
SN - 2058-5276
VL - 5
SP - 1504-1515+
JO - Nature Microbiology
JF - Nature Microbiology
IS - 12
ER -