TY - JOUR
T1 - Knockout of the predominant conventional PKC isoform, PKCα, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake
AU - Jensen, Thomas E.
AU - Maarbjerg, Stine J.
AU - Rose, Adam J.
AU - Leitges, Michael
AU - Richter, Erik. A
PY - 2009/8
Y1 - 2009/8
N2 - Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required for contraction-stimulated glucose uptake in mouse muscles, contraction-stimulated glucose uptake ex vivo was first evaluated in the presence of three commonly used cPKC inhibitors (calphostin C, Gö-6976, and Gö-6983) in incubated mouse soleus and extensor digitorum longus (EDL) muscles. All potently inhibited contraction-stimulated glucose uptake by 50-100%, whereas both Gö compounds, but not calphostin C, inhibited insulin-stimulated glucose uptake modestly. AMP-activated protein kinase (AMPK) and eukaryotic elongation factor 2 phosphorylation was unaffected by the blockers. PKCα was estimated to account for ∼97% of total cPKC protein expression in skeletal muscle. However, in muscles from PKCα knockout (KO) mice, neither contraction- nor phorbol ester-stimulated glucose uptake ex vivo differed compared with the wild type. Furthermore, the effects of calphostin C and Gö-6983 on contraction-induced glucose uptake were similar in muscles lacking PKCα and in the wild type. It can be concluded that PKCα, representing ∼97% of cPKC in skeletal muscle, is not required for contraction-stimulated glucose uptake. Thus the effect of the PKC blockers on glucose uptake is either nonspecific working on other parts of contraction-induced signaling or the remaining cPKC isoforms are sufficient for stimulating glucose uptake during contractions.
AB - Conventional (c) protein kinase C (PKC) activity has been shown to increase with skeletal muscle contraction, and numerous studies using primarily pharmacological inhibitors have implicated cPKCs in contraction-stimulated glucose uptake. Here, to confirm that cPKC activity is required for contraction-stimulated glucose uptake in mouse muscles, contraction-stimulated glucose uptake ex vivo was first evaluated in the presence of three commonly used cPKC inhibitors (calphostin C, Gö-6976, and Gö-6983) in incubated mouse soleus and extensor digitorum longus (EDL) muscles. All potently inhibited contraction-stimulated glucose uptake by 50-100%, whereas both Gö compounds, but not calphostin C, inhibited insulin-stimulated glucose uptake modestly. AMP-activated protein kinase (AMPK) and eukaryotic elongation factor 2 phosphorylation was unaffected by the blockers. PKCα was estimated to account for ∼97% of total cPKC protein expression in skeletal muscle. However, in muscles from PKCα knockout (KO) mice, neither contraction- nor phorbol ester-stimulated glucose uptake ex vivo differed compared with the wild type. Furthermore, the effects of calphostin C and Gö-6983 on contraction-induced glucose uptake were similar in muscles lacking PKCα and in the wild type. It can be concluded that PKCα, representing ∼97% of cPKC in skeletal muscle, is not required for contraction-stimulated glucose uptake. Thus the effect of the PKC blockers on glucose uptake is either nonspecific working on other parts of contraction-induced signaling or the remaining cPKC isoforms are sufficient for stimulating glucose uptake during contractions.
KW - Protein kinase C
UR - http://www.scopus.com/inward/record.url?scp=68049104007&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.90610.2008
DO - 10.1152/ajpendo.90610.2008
M3 - Article
C2 - 19458061
AN - SCOPUS:68049104007
VL - 297
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
SN - 1522-1555
IS - 2
ER -