TY - JOUR
T1 - Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B
AU - Vivian, Julian P
AU - Duncan, Renee C
AU - Berry, Richard
AU - O'Connor, Geraldine M
AU - Reid, Hugh H
AU - Beddoe, Travis C
AU - Gras, Stephanie
AU - Saunders, Philippa M
AU - Olshina, Maya A
AU - Widjaja, Jacqueline ML
AU - Harpur, Christopher M
AU - Lin, Jie
AU - Maloveste, Sebastien M
AU - Price, David A
AU - Lafont, Bernard AP
AU - McVicar, Daniel W
AU - Clements, Craig S
AU - Brooks, Andrew G
AU - Rossjohn, Jamie
PY - 2011
Y1 - 2011
N2 - Members of the killer cell immunoglobulin-like receptor (KIR) family, a large group of polymorphic receptors expressed on natural killer (NK) cells, recognize particular peptide-laden human leukocyte antigen (pHLA) class I molecules and have a pivotal role in innate immune responses. Allelic variation and extensive polymorphism within the three-domain KIR family (KIR3D, domains D0-D1-D2) affects pHLA binding specificity and is linked to the control of viral replication and the treatment outcome of certain haematological malignancies. Here we describe the structure of a human KIR3DL1 receptor bound to HLA-B*5701 complexed with a self-peptide. KIR3DL1 clamped around the carboxy-terminal end of the HLA-B*5701 antigen-binding cleft, resulting in two discontinuous footprints on the pHLA. First, the D0 domain, a distinguishing feature of the KIR3D family, extended towards beta2-microglobulin and abutted a region of the HLA molecule with limited polymorphism, thereby acting as an innate HLA sensor domain. Second, whereas the D2-HLA-B*5701 interface exhibited a high degree of complementarity, the D1-pHLA-B*5701 contacts were suboptimal and accommodated a degree of sequence variation both within the peptide and the polymorphic region of the HLA molecule. Although the two-domain KIR (KIR2D) and KIR3DL1 docked similarly onto HLA-C and HLA-B respectively, the corresponding D1-mediated interactions differed markedly, thereby providing insight into the specificity of KIR3DL1 for discrete HLA-A and HLA-B allotypes. Collectively, in association with extensive mutagenesis studies at the KIR3DL1-pHLA-B*5701 interface, we provide a framework for understanding the intricate interplay between peptide variability, KIR3D and HLA polymorphism in determining the specificity requirements of this essential innate interaction that is conserved across primate species.
AB - Members of the killer cell immunoglobulin-like receptor (KIR) family, a large group of polymorphic receptors expressed on natural killer (NK) cells, recognize particular peptide-laden human leukocyte antigen (pHLA) class I molecules and have a pivotal role in innate immune responses. Allelic variation and extensive polymorphism within the three-domain KIR family (KIR3D, domains D0-D1-D2) affects pHLA binding specificity and is linked to the control of viral replication and the treatment outcome of certain haematological malignancies. Here we describe the structure of a human KIR3DL1 receptor bound to HLA-B*5701 complexed with a self-peptide. KIR3DL1 clamped around the carboxy-terminal end of the HLA-B*5701 antigen-binding cleft, resulting in two discontinuous footprints on the pHLA. First, the D0 domain, a distinguishing feature of the KIR3D family, extended towards beta2-microglobulin and abutted a region of the HLA molecule with limited polymorphism, thereby acting as an innate HLA sensor domain. Second, whereas the D2-HLA-B*5701 interface exhibited a high degree of complementarity, the D1-pHLA-B*5701 contacts were suboptimal and accommodated a degree of sequence variation both within the peptide and the polymorphic region of the HLA molecule. Although the two-domain KIR (KIR2D) and KIR3DL1 docked similarly onto HLA-C and HLA-B respectively, the corresponding D1-mediated interactions differed markedly, thereby providing insight into the specificity of KIR3DL1 for discrete HLA-A and HLA-B allotypes. Collectively, in association with extensive mutagenesis studies at the KIR3DL1-pHLA-B*5701 interface, we provide a framework for understanding the intricate interplay between peptide variability, KIR3D and HLA polymorphism in determining the specificity requirements of this essential innate interaction that is conserved across primate species.
UR - http://www.nature.com/nature/journal/v479/n7373/pdf/nature10517.pdf
U2 - 10.1038/nature10517
DO - 10.1038/nature10517
M3 - Article
SN - 0028-0836
VL - 479
SP - 401
EP - 405
JO - Nature
JF - Nature
IS - 7373
ER -