Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor

Denise Wootten, Christopher A. Reynolds, Kevin J. Smith, Juan C. Mobarec, Sebastian G.B. Furness, Laurence J. Miller, Arthur Christopoulos, Patrick M. Sexton

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30227, K4.64288, R5.40310) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46176), 6 (R6.37348) and 7 (N7.61406 and E7.63408) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56326) and TM6 (K6.35346 and K6.40351) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52182 and Y3.52250) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor.

Original languageEnglish
Pages (from-to)68-87
Number of pages20
JournalBiochemical Pharmacology
Volume118
DOIs
Publication statusPublished - 15 Oct 2016

Keywords

  • Biased agonism
  • Cell signaling
  • G protein-coupled receptor
  • Glucagon-like peptide-1 receptor

Cite this

@article{0d7bb4a624fa479abbe668d638f05c33,
title = "Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor",
abstract = "Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30227, K4.64288, R5.40310) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46176), 6 (R6.37348) and 7 (N7.61406 and E7.63408) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56326) and TM6 (K6.35346 and K6.40351) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52182 and Y3.52250) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor.",
keywords = "Biased agonism, Cell signaling, G protein-coupled receptor, Glucagon-like peptide-1 receptor",
author = "Denise Wootten and Reynolds, {Christopher A.} and Smith, {Kevin J.} and Mobarec, {Juan C.} and Furness, {Sebastian G.B.} and Miller, {Laurence J.} and Arthur Christopoulos and Sexton, {Patrick M.}",
year = "2016",
month = "10",
day = "15",
doi = "10.1016/j.bcp.2016.08.015",
language = "English",
volume = "118",
pages = "68--87",
journal = "Biochemical Pharmacology",
issn = "0006-2952",
publisher = "Elsevier",

}

TY - JOUR

T1 - Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor

AU - Wootten, Denise

AU - Reynolds, Christopher A.

AU - Smith, Kevin J.

AU - Mobarec, Juan C.

AU - Furness, Sebastian G.B.

AU - Miller, Laurence J.

AU - Christopoulos, Arthur

AU - Sexton, Patrick M.

PY - 2016/10/15

Y1 - 2016/10/15

N2 - Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30227, K4.64288, R5.40310) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46176), 6 (R6.37348) and 7 (N7.61406 and E7.63408) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56326) and TM6 (K6.35346 and K6.40351) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52182 and Y3.52250) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor.

AB - Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30227, K4.64288, R5.40310) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46176), 6 (R6.37348) and 7 (N7.61406 and E7.63408) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56326) and TM6 (K6.35346 and K6.40351) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52182 and Y3.52250) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor.

KW - Biased agonism

KW - Cell signaling

KW - G protein-coupled receptor

KW - Glucagon-like peptide-1 receptor

UR - http://www.scopus.com/inward/record.url?scp=84989879867&partnerID=8YFLogxK

U2 - 10.1016/j.bcp.2016.08.015

DO - 10.1016/j.bcp.2016.08.015

M3 - Article

VL - 118

SP - 68

EP - 87

JO - Biochemical Pharmacology

JF - Biochemical Pharmacology

SN - 0006-2952

ER -