TY - JOUR
T1 - Iron-rich Metal-poor Stars and the Astrophysics of Thermonuclear Events Observationally Classified as Type Ia Supernovae. I. Establishing the Connection
AU - Reggiani, Henrique
AU - Schlaufman, Kevin C.
AU - Casey, Andrew R.
N1 - Funding Information:
We thank Ian Roederer, Ian Thompson, and Heather Jacobson for providing us with their spectra of BD +80°245, HE 0533–5340, and SMSS J034249.53–284216.0. We thank Abigail Polin and Yossef Zenati for numerous helpful discussions about the physics of thermonuclear explosions and the observational properties of Type Ia supernovae. H.R. acknowledges support from a Carnegie Fellowship. Parts of this research were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project No. CE170100013. The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University, and the Australian Astronomical Observatory. SkyMapper is owned and operated by the Australian National University’s Research School of Astronomy and Astrophysics. The survey data were processed and provided by the SkyMapper Team at ANU. The SkyMapper node of the All-Sky Virtual Observatory (ASVO) is hosted at the National Computational Infrastructure (NCI). Development and support of the SkyMapper node of the ASVO have been funded in part by Astronomy Australia Limited (AAL) and the Australian Government through the Commonwealth’s Education Investment Fund (EIF) and National Collaborative Research Infrastructure Strategy (NCRIS), particularly the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service Projects (ANDS). This work has made use of data from the European Space Agency (ESA) mission Gaia ( https://www.cosmos.esa.int/gaia ), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium ). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France (Wenger et al. ). This research has made use of the VizieR catalog access tool, CDS, Strasbourg, France (DOI: 10.26093/cds/vizier ). The original description of the VizieR service was published in 2000, A&AS 143, 23 (Ochsenbein et al. ). This research has made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. This research has made use of NASA’s Astrophysics Data System Bibliographic Services.
Funding Information:
We thank Ian Roederer, Ian Thompson, and Heather Jacobson for providing us with their spectra of BD +80°245, HE 0533-5340, and SMSS J034249.53-284216.0. We thank Abigail Polin and Yossef Zenati for numerous helpful discussions about the physics of thermonuclear explosions and the observational properties of Type Ia supernovae. H.R. acknowledges support from a Carnegie Fellowship. Parts of this research were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project No. CE170100013. The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University, and the Australian Astronomical Observatory. SkyMapper is owned and operated by the Australian National University’s Research School of Astronomy and Astrophysics. The survey data were processed and provided by the SkyMapper Team at ANU. The SkyMapper node of the All-Sky Virtual Observatory (ASVO) is hosted at the National Computational Infrastructure (NCI). Development and support of the SkyMapper node of the ASVO have been funded in part by Astronomy Australia Limited (AAL) and the Australian Government through the Commonwealth’s Education Investment Fund (EIF) and National Collaborative Research Infrastructure Strategy (NCRIS), particularly the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service Projects (ANDS). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France (Wenger et al. 2000). This research has made use of the VizieR catalog access tool, CDS, Strasbourg, France (DOI:10.26093/cds/vizier). The original description of the VizieR service was published in 2000, A&AS 143, 23 (Ochsenbein et al. 2000). This research has made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. This research has made use of NASA’s Astrophysics Data System Bibliographic Services.
Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - The progenitor systems and explosion mechanisms responsible for the thermonuclear events observationally classified as Type Ia supernovae are uncertain and difficult to uniquely constrain using traditional observations of Type Ia supernova host galaxies, progenitors, light curves, and remnants. For the subset of thermonuclear events that are prolific producers of iron, we use published theoretical nucleosynthetic yields to identify a set of elemental abundance ratios infrequently observed in metal-poor stars but shared across a range of progenitor systems and explosion mechanisms: [Na, Mg, Co/Fe] < 0. We label stars with this abundance signature “iron-rich metal-poor,” or IRMP stars. We suggest that IRMP stars formed in environments dominated by thermonuclear nucleosynthesis and consequently that their elemental abundances can be used to constrain both the progenitor systems and explosion mechanisms responsible for thermonuclear explosions. We identify three IRMP stars in the literature and homogeneously infer their elemental abundances. We find that the elemental abundances of BD +80 245, HE 0533-5340, and SMSS J034249.53-284216.0 are best explained by the (double) detonations of sub-Chandrasekhar-mass CO white dwarfs. If our interpretation of IRMP stars is accurate, then they should be very rare in globular clusters and more common in the Magellanic Clouds and dwarf spheroidal galaxies than in the Milky Way’s halo. We propose that future studies of IRMP stars will quantify the relative occurrences of different thermonuclear event progenitor systems and explosion mechanisms.
AB - The progenitor systems and explosion mechanisms responsible for the thermonuclear events observationally classified as Type Ia supernovae are uncertain and difficult to uniquely constrain using traditional observations of Type Ia supernova host galaxies, progenitors, light curves, and remnants. For the subset of thermonuclear events that are prolific producers of iron, we use published theoretical nucleosynthetic yields to identify a set of elemental abundance ratios infrequently observed in metal-poor stars but shared across a range of progenitor systems and explosion mechanisms: [Na, Mg, Co/Fe] < 0. We label stars with this abundance signature “iron-rich metal-poor,” or IRMP stars. We suggest that IRMP stars formed in environments dominated by thermonuclear nucleosynthesis and consequently that their elemental abundances can be used to constrain both the progenitor systems and explosion mechanisms responsible for thermonuclear explosions. We identify three IRMP stars in the literature and homogeneously infer their elemental abundances. We find that the elemental abundances of BD +80 245, HE 0533-5340, and SMSS J034249.53-284216.0 are best explained by the (double) detonations of sub-Chandrasekhar-mass CO white dwarfs. If our interpretation of IRMP stars is accurate, then they should be very rare in globular clusters and more common in the Magellanic Clouds and dwarf spheroidal galaxies than in the Milky Way’s halo. We propose that future studies of IRMP stars will quantify the relative occurrences of different thermonuclear event progenitor systems and explosion mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=85170034982&partnerID=8YFLogxK
U2 - 10.3847/1538-3881/ace68c
DO - 10.3847/1538-3881/ace68c
M3 - Article
AN - SCOPUS:85170034982
SN - 0004-6256
VL - 166
JO - The Astronomical Journal
JF - The Astronomical Journal
IS - 3
M1 - 128
ER -