TY - JOUR
T1 - Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells
AU - Matsunaga, Toshiyuki
AU - Arakaki, Marina
AU - Kamiya, T
AU - Endo, Satoshi
AU - El-Kabbani, Ossama
AU - Hara, Akira
PY - 2009
Y1 - 2009
N2 - 9,10-Phenanthrenequinone (9,10-PQ), a major quinone found in diesel exhaust particles, is considered to generate reactive oxygen species (ROS) through its redox cycling. Here, we show that 9,10-PQ evokes apoptosis in human aortic endothelial cells (HAECs) and its apoptotic signaling includes ROS generation and caspase activation. The 9,10-PQ-induced cytotoxicity was inhibited by ROS scavengers, indicating that intracellular ROS generation is responsible for the 9,10-PQ-induced apoptosis. Comparison of mRNA expression levels and kinetic constants in the 9,10-PQ reduction among 10 human reductases suggests that aldo-keto reductase 1C3 (AKR1C3) is a 9,10-PQ reductase in HAECs. In in vitro 9,10-PQ reduction by AKR1C3, the reduced product 9,10-dihydroxyphenanthrene and superoxide anions were formed, suggesting the enzymatic two-electron reduction of 9,10-PQ that thereby causes oxidative stress through its redox cycling. In addition, the participation of AKR1C3 in 9,10-PQ-redox cycling was confirmed by the data that AKR1C3 overexpression in endothelial cells augmented the ROS generation and cytotoxicity by 9,10-PQ, and the ROS scavengers inhibited the toxic effects. Pretreatment of the overexpressing cells with AKR1C3 inhibitors, flufenamic acid and indomethacin, suppressed the 9,10-PQ-induced GSH depletion. These results suggest that AKR1C3 is a key enzyme in the initial step of 9,10-PQ-induced cytotoxicity in HAECs. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
AB - 9,10-Phenanthrenequinone (9,10-PQ), a major quinone found in diesel exhaust particles, is considered to generate reactive oxygen species (ROS) through its redox cycling. Here, we show that 9,10-PQ evokes apoptosis in human aortic endothelial cells (HAECs) and its apoptotic signaling includes ROS generation and caspase activation. The 9,10-PQ-induced cytotoxicity was inhibited by ROS scavengers, indicating that intracellular ROS generation is responsible for the 9,10-PQ-induced apoptosis. Comparison of mRNA expression levels and kinetic constants in the 9,10-PQ reduction among 10 human reductases suggests that aldo-keto reductase 1C3 (AKR1C3) is a 9,10-PQ reductase in HAECs. In in vitro 9,10-PQ reduction by AKR1C3, the reduced product 9,10-dihydroxyphenanthrene and superoxide anions were formed, suggesting the enzymatic two-electron reduction of 9,10-PQ that thereby causes oxidative stress through its redox cycling. In addition, the participation of AKR1C3 in 9,10-PQ-redox cycling was confirmed by the data that AKR1C3 overexpression in endothelial cells augmented the ROS generation and cytotoxicity by 9,10-PQ, and the ROS scavengers inhibited the toxic effects. Pretreatment of the overexpressing cells with AKR1C3 inhibitors, flufenamic acid and indomethacin, suppressed the 9,10-PQ-induced GSH depletion. These results suggest that AKR1C3 is a key enzyme in the initial step of 9,10-PQ-induced cytotoxicity in HAECs. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
UR - http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T56-4W8VW4T-2&_user=542840&_coverDate=09%2F14%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d
M3 - Article
VL - 181
SP - 52
EP - 60
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
SN - 0009-2797
IS - 1
ER -