Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands

Moira Ambrosi, Neil R. Cameron, Benjamin G. Davis, Snjezana Stolnik

Research output: Contribution to journalArticleResearchpeer-review

82 Citations (Scopus)


The interaction between synthetic glycoplymers bearing β-D-galactose side groups and the lectin peanut agglutinin (PNA) was investigated by UV-difference spectroscopy and isothermal titration calorimetry (ITC). UV-difference spectroscopy indicated that the polymer-lectin interaction was stronger than that between PNA and either the corresponding monomer, D-galactose or D-lactose. The thermodynamics of binding (K, ΔG, ΔH, ΔS and n) were determined from ITC data by fitting with a two-site, non-cooperative binding model. It was found that the glycopolymer displayed around a 50 times greater affinity for the lectin than the parent carbohydrate, and around 10 times greater than the monomer, on a valency-corrected basis. Binding was found to be entropically driven, and was accompanied by aggregation and precipitation of protein molecules. Furthermore, interesting differences between polymers prepared either from deacetylated monomers, or by deacetylation of pre-formed polymers, were found.

Original languageEnglish
Pages (from-to)1476-1480
Number of pages5
JournalOrganic & Biomolecular Chemistry
Issue number8
Publication statusPublished - 21 Apr 2005
Externally publishedYes

Cite this