Investigating deep side layers for skin lesion segmentation

Behzad Bozorgtabar, Zongyuan Ge, Rajib Chakravorty, Mani Abedini, Sergey Demyanov, Rahil Garnavi

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

7 Citations (Scopus)


Accurate skin lesion segmentation is an important yet challenging problem for medical image analysis. The skin lesion segmentation is subject to variety of challenges such as the significant pattern and colour diversity found within the lesions, presence of various artifacts, etc. In this paper, we present two fully convolutional networks with several side outputs to take advantage of discriminative capability of features learned at intermediate layers with varying resolutions and scales for the lesion segmentation. More specifically, we integrate fine and coarse prediction scores of the side-layers which allows our framework to not only output accurate probability map for the lesion, but also extract fine lesion boundary details such as the fuzzy border, which further improves the lesion segmentation. Quantitative evaluation is performed on the 2016 International Symposium on Biomedical Imaging (ISBI 2016) dataset, which shows our proposed approach compares favorably with state-of-the-art skin segmentation methods.

Original languageEnglish
Title of host publication2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
EditorsSimon Warfield, Arrate Munoz-Barrutia
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Number of pages5
ISBN (Electronic)9781509011728
ISBN (Print)9781509011735
Publication statusPublished - 15 Jun 2017
Externally publishedYes
EventIEEE International Symposium on Biomedical Imaging (ISBI) 2017 - Melbourne Convention and Exhibition Centre, Melbourne, Australia
Duration: 18 Apr 201721 Apr 2017
Conference number: 14th (IEEE proceedings)


ConferenceIEEE International Symposium on Biomedical Imaging (ISBI) 2017
Abbreviated titleISBI 2017
OtherISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2017 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers.
Internet address


  • Convolutional neural network
  • Fusion
  • Multi-layer net architectures
  • Skin lesion segmentation

Cite this