TY - JOUR
T1 - Intraventricular Drug Delivery and Sampling for Pharmacokinetics and Pharmacodynamics Study
AU - Oberrauch, Sara
AU - Lu, Jing
AU - Cornthwaite-Duncan, Linda
AU - Hussein, Maytham
AU - Li, Jian
AU - Rao, Gauri
AU - Velkov, Tony
N1 - Funding Information:
The authors thank the Biomedical Science Animal Facility at the University of Melbourne for the provision and care of animals. This research was supported by a research grant from the National Institute of Allergy and Infectious Diseases of the National Institute of Health (R01 AI146241, GR, and TV). JL is an Australian National Health Medical Research Council (NHMRC) Principal Research Fellow. The content is solely the authors' responsibility and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institute of Health.
Publisher Copyright:
© 2022 JoVE Journal of Visualized Experiments.
PY - 2022/3
Y1 - 2022/3
N2 - Although the blood-brain barrier (BBB) protects the brain from foreign entities, it also prevents some therapeutics from crossing into the central nervous system (CNS) to ameliorate diseases or infections. Drugs are administered directly into the CNS in animals and humans to circumvent the BBB. The present protocol describes a unique way of treating brain infections through intraventricular delivery of antibiotics, i.e., polymyxins, the last-line antibiotics to treat multi-drug resistant Gram-negative bacteria. A straightforward stereotaxic surgery protocol was developed to implant a guide cannula reaching into the lateral ventricle in rats. After a recovery period of 24 h, rats can be injected consciously and repeatedly through a cannula that is fitted to the guide. Injections can be delivered manually as a bolus or infusion using a microinjection pump to obtain a slow and controlled flow rate. The intraventricular injection was successfully confirmed with Evans Blue dye. Cerebrospinal fluid (CSF) can be drained, and the brain and other organs can be collected. This approach is highly amenable for studies involving drug delivery to the CNS and subsequent assessment of pharmacokinetic and pharmacodynamic activity.
AB - Although the blood-brain barrier (BBB) protects the brain from foreign entities, it also prevents some therapeutics from crossing into the central nervous system (CNS) to ameliorate diseases or infections. Drugs are administered directly into the CNS in animals and humans to circumvent the BBB. The present protocol describes a unique way of treating brain infections through intraventricular delivery of antibiotics, i.e., polymyxins, the last-line antibiotics to treat multi-drug resistant Gram-negative bacteria. A straightforward stereotaxic surgery protocol was developed to implant a guide cannula reaching into the lateral ventricle in rats. After a recovery period of 24 h, rats can be injected consciously and repeatedly through a cannula that is fitted to the guide. Injections can be delivered manually as a bolus or infusion using a microinjection pump to obtain a slow and controlled flow rate. The intraventricular injection was successfully confirmed with Evans Blue dye. Cerebrospinal fluid (CSF) can be drained, and the brain and other organs can be collected. This approach is highly amenable for studies involving drug delivery to the CNS and subsequent assessment of pharmacokinetic and pharmacodynamic activity.
UR - http://www.scopus.com/inward/record.url?scp=85128794388&partnerID=8YFLogxK
U2 - 10.3791/63540
DO - 10.3791/63540
M3 - Article
C2 - 35435913
AN - SCOPUS:85128794388
SN - 1940-087X
VL - 2022
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 181
M1 - e63540
ER -