TY - JOUR
T1 - Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium
AU - Ghaem-Maghami, M.
AU - Simmons, C. P.
AU - Daniell, S.
AU - Pizza, M.
AU - Lewis, D.
AU - Frankel, G.
AU - Dougan, G.
PY - 2001/9/6
Y1 - 2001/9/6
N2 - The formation of attaching and effacing (A/E) lesions on gut enterocytes is central to the pathogenesis of enterohemorrhagic (EHEC) Escherichia coli, enteropathogenic E. coli (EPEC), and the rodent pathogen Citrobacter rodentium. Genes encoding A/E lesion formation map to a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Here we show that the LEE-encoded proteins EspA, EspB, Tir, and intimin are the targets of long-lived humoral immune responses in C. rodentium-infected mice. Mice infected with C. rodentium developed robust acquired immunity and were resistant to reinfection with wild-type C. rodentium or a C. rodentium derivative, DBS255(pCVD438), which expressed intimin derived from EPEC strain E2348/69. The receptor-binding domain of intimin polypeptides is located within the carboxy-terminal 280 amino acids (Int280). Mucosal and systemic vaccination regimens using enterotoxin-based adjuvants were employed to elicit immune responses to recombinant Int280α from EPEC strain E2348/69. Mice vaccinated subcutaneously with Int280α, in the absence of adjuvant, were significantly more resistant to oral challenge with DBS255(pCVD438) but not with wild-type C. rodentium. This type-specific immunity could not be overcome by employing an exposed, highly conserved domain of intimin (Int388-667) as a vaccine. These results show that anti-intimin immune responses can modulate the outcome of a C. rodentium infection and support the use of intimin as a component of a type-specific EPEC or EHEC vaccine.
AB - The formation of attaching and effacing (A/E) lesions on gut enterocytes is central to the pathogenesis of enterohemorrhagic (EHEC) Escherichia coli, enteropathogenic E. coli (EPEC), and the rodent pathogen Citrobacter rodentium. Genes encoding A/E lesion formation map to a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Here we show that the LEE-encoded proteins EspA, EspB, Tir, and intimin are the targets of long-lived humoral immune responses in C. rodentium-infected mice. Mice infected with C. rodentium developed robust acquired immunity and were resistant to reinfection with wild-type C. rodentium or a C. rodentium derivative, DBS255(pCVD438), which expressed intimin derived from EPEC strain E2348/69. The receptor-binding domain of intimin polypeptides is located within the carboxy-terminal 280 amino acids (Int280). Mucosal and systemic vaccination regimens using enterotoxin-based adjuvants were employed to elicit immune responses to recombinant Int280α from EPEC strain E2348/69. Mice vaccinated subcutaneously with Int280α, in the absence of adjuvant, were significantly more resistant to oral challenge with DBS255(pCVD438) but not with wild-type C. rodentium. This type-specific immunity could not be overcome by employing an exposed, highly conserved domain of intimin (Int388-667) as a vaccine. These results show that anti-intimin immune responses can modulate the outcome of a C. rodentium infection and support the use of intimin as a component of a type-specific EPEC or EHEC vaccine.
UR - http://www.scopus.com/inward/record.url?scp=0034867482&partnerID=8YFLogxK
U2 - 10.1128/IAI.69.9.5597-5605.2001
DO - 10.1128/IAI.69.9.5597-5605.2001
M3 - Article
C2 - 11500434
AN - SCOPUS:0034867482
VL - 69
SP - 5597
EP - 5605
JO - Infection and Immunity
JF - Infection and Immunity
SN - 1098-5522
IS - 9
ER -