Interval-valued complex fuzzy soft set and its application

Ganeshsree Selvachandran, Prem Kumar Singh

Research output: Contribution to journalArticleResearchpeer-review

39 Citations (Scopus)

Abstract

This paper is focused on handling complex data sets using the properties of interval-valued complex fuzzy sets (IV-CFSs). We extend the IV-CFS model to include a generalization parameter that reflects the opinion of experts to validate the information provided by the users. Our proposed generalized interval-valued complex fuzzy soft set model allows users to indicate their confidence in the data through the interval-based membership structure. The built-in validation mechanism in the model provides a robust framework that allows experts to ratify the individual hesitancy of the users supplying data to the system. To further enhance the utility of the proposed model, we introduce a weighted geometric aggregation operator and an accompanying score function. This aggregation operator reduces the multiple components in the proposed model into a single component with the aim of analyzing the decision-making process in a precise manner. An application of the aggregation operator and score function is demonstrated via a MADM problem related to measuring the effects of the implementation of TPPA by the Malaysian government on selected sectors of the Malaysian economy, and the time taken for these effects to manifest itself on the economic sectors that are considered. The results derived from this method is then corroborated using the interval-valued complex fuzzy concept lattice method.

Original languageEnglish
Pages (from-to)101-117
Number of pages17
JournalInternational Journal for Uncertainty Quantification
Volume8
Issue number2
DOIs
Publication statusPublished - 2018
Externally publishedYes

Keywords

  • Aggregation operator
  • Fuzzy concept lattice
  • Interval-valued complex fuzzy set
  • MADM
  • Uncertainty quantification

Cite this