Projects per year
Abstract
We investigate polariton quantum correlations in a coherently driven box cavity in the low driving regime, with a particular focus on accounting for the polarization degree of freedom. The possibility of having different interaction strengths between co- and cross-circularly polarized polaritons as well as a realistic linear-polarization splitting allows one to model the system as two coupled nonlinear resonators with both self- and cross-Kerr-like nonlinearities, thus making our results potentially relevant for other experimental platforms. Within an effective wave-function approach, we obtain analytical expressions for the steady-state polarization-resolved polariton populations and second-order correlation functions, which agree very well with our numerical results obtained from a Lindblad master equation. Notably, we highlight that depending on the excitation polarization (circular or linear), both the unconventional (interference-mediated) and conventional (mediated by nonlinearities) antibunchings can be investigated in a single cavity. Moreover, using our results, we argue that recent experiments on confined fiber-cavity polaritons are likely to have probed a regime where the dominant interaction is between cross-polarized polaritons, which is characteristic of the polariton Feshbach resonance. We furthermore investigate the regime close to resonance using a two-channel model and we show that systems with large biexciton binding energies, such as atomically thin semiconductors, are promising platforms for realizing strong polariton antibunching.
Original language | English |
---|---|
Article number | 035304 |
Number of pages | 21 |
Journal | Physical Review B |
Volume | 104 |
Issue number | 3 |
DOIs | |
Publication status | Published - 20 Jul 2021 |
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M., Bao, Q., Culcer, D., Davis, M., Davis, J. A., Hamilton, A., Helmerson, K., Klochan, O., Medhekar, N., Ostrovskaya, E. A., Parish, M., Schiffrin, A., Seidel, J., Sushkov, O., Valanoor, N., Wang, X., Galitskiy, V., Gurarie, V., Hannon, J., Höfling, S., Hone, J., Rule, K. C., Krausz, F., Littlewood, P., MacDonald, A., Neto, A., Oezyilmaz, B., Paglione, J., Phillips, W., Spielman, I., Tadich, A., Xue, Q., Cole, J., Perali, A., Neilson, D., Sek, G., Gaston, N., Hodgkiss, J. M., Tang, M., Karel, J., Nguyen, T., Adam, S., Granville, S., Kumar, P. & Daeneke, T.
Australian Research Council (ARC), Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales (UNSW), Australian National University (ANU), RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research
-
Few-body correlations in many-particle quantum matter
Australian Research Council (ARC), Monash University
1/01/17 → 17/10/23
Project: Research