Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore

Mastura Monif, Christopher A. Reid, Kim L. Powell, Katherine J. Drummond, Terrence J. O'Brien, David A. Williams

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Background: Enhanced expression of the purinergic P2X7 receptor (P2X7R) occurs in several neuroinflammatory conditions where increased microglial activation is a co-existing feature. P2X7 receptors can function either as a cation channel or, upon continued stimulation, a large pore. P2X7R-over-expression alone is sufficient to drive microglial activation and proliferation in a process that is P2X7R pore dependent, although the biological signaling pathway through which this occurs remains unclear. Once activated, microglia are known to release a number of bioactive substances that include the proinflammatory cytokine interleukin-1β (IL-1β). Previous studies have linked P2X7R stimulation to the processing and release of IL-1β, but whether the channel or pore state of P2X7R is predominant in driving IL-1β release is unknown and is a major aim of this study. In addition, we will determine whether IL-1β has trophic effects on surrounding microglia. Methods: Electron microscopy and immunohistochemistry were used to delineate the sub-cellular localization of P2X7R and IL-1β in primary hippocampal rat cultures. FM1-43 fluorescent dye and confocal microscopy were used to quantify vesicular exocytosis from microglia expressing the pore-forming P2X7R versus a non-pore-forming point mutant, P2X7RG345Y. IL-1β in culture was quantified with an enzyme-linked immunosorbent assay (ELISA). IL-1β intracellular processing was blocked with inhibition of caspase 1 (with a synthetic peptide antagonist), and its extracellular form was neutralized with an IL-1β neutralizing antibody. Microglial activation and proliferation was quantified immunohistochemically with confocal microscopy. Results: P2X7R and IL-1β were co-localized in lysosomes. Vesicular exocytosis was higher in microglia expressing the pore-forming P2X7R compared to those expressing the non-pore-forming mutant. There was increased IL-1β in cultures expressing the pore-forming P2X7R, and this proinflammatory cytokine was found to mediate the trophic effects of P2X7R pore in microglia. Inhibition of IL-1β production and function resulted in a significant decrease in P2X7R-mediated microglial activation and proliferation. Conclusions: IL-1β is a mediator of microglial activation and proliferation, and its release/production is P2X7R pore dependent. Blockade of P2X7R pore could serve as a therapeutic target in alleviating the degree of inflammation seen in neurodegenerative and neoplastic conditions.

Original languageEnglish
Article number173
Number of pages15
JournalJournal of Neuroinflammation
Volume13
DOIs
Publication statusPublished - 30 Jun 2016
Externally publishedYes

Keywords

  • Activation
  • Interleukin-1β
  • Microglia
  • Neuroinflammation
  • P2X7 receptor
  • P2X7R pore
  • Proliferation

Cite this

@article{a6fd265db8d24bdfa438d83acc280734,
title = "Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore",
abstract = "Background: Enhanced expression of the purinergic P2X7 receptor (P2X7R) occurs in several neuroinflammatory conditions where increased microglial activation is a co-existing feature. P2X7 receptors can function either as a cation channel or, upon continued stimulation, a large pore. P2X7R-over-expression alone is sufficient to drive microglial activation and proliferation in a process that is P2X7R pore dependent, although the biological signaling pathway through which this occurs remains unclear. Once activated, microglia are known to release a number of bioactive substances that include the proinflammatory cytokine interleukin-1β (IL-1β). Previous studies have linked P2X7R stimulation to the processing and release of IL-1β, but whether the channel or pore state of P2X7R is predominant in driving IL-1β release is unknown and is a major aim of this study. In addition, we will determine whether IL-1β has trophic effects on surrounding microglia. Methods: Electron microscopy and immunohistochemistry were used to delineate the sub-cellular localization of P2X7R and IL-1β in primary hippocampal rat cultures. FM1-43 fluorescent dye and confocal microscopy were used to quantify vesicular exocytosis from microglia expressing the pore-forming P2X7R versus a non-pore-forming point mutant, P2X7RG345Y. IL-1β in culture was quantified with an enzyme-linked immunosorbent assay (ELISA). IL-1β intracellular processing was blocked with inhibition of caspase 1 (with a synthetic peptide antagonist), and its extracellular form was neutralized with an IL-1β neutralizing antibody. Microglial activation and proliferation was quantified immunohistochemically with confocal microscopy. Results: P2X7R and IL-1β were co-localized in lysosomes. Vesicular exocytosis was higher in microglia expressing the pore-forming P2X7R compared to those expressing the non-pore-forming mutant. There was increased IL-1β in cultures expressing the pore-forming P2X7R, and this proinflammatory cytokine was found to mediate the trophic effects of P2X7R pore in microglia. Inhibition of IL-1β production and function resulted in a significant decrease in P2X7R-mediated microglial activation and proliferation. Conclusions: IL-1β is a mediator of microglial activation and proliferation, and its release/production is P2X7R pore dependent. Blockade of P2X7R pore could serve as a therapeutic target in alleviating the degree of inflammation seen in neurodegenerative and neoplastic conditions.",
keywords = "Activation, Interleukin-1β, Microglia, Neuroinflammation, P2X7 receptor, P2X7R pore, Proliferation",
author = "Mastura Monif and Reid, {Christopher A.} and Powell, {Kim L.} and Drummond, {Katherine J.} and O'Brien, {Terrence J.} and Williams, {David A.}",
year = "2016",
month = "6",
day = "30",
doi = "10.1186/s12974-016-0621-8",
language = "English",
volume = "13",
journal = "Journal of Neuroinflammation",
issn = "1742-2094",
publisher = "Springer-Verlag London Ltd.",

}

Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore. / Monif, Mastura; Reid, Christopher A.; Powell, Kim L.; Drummond, Katherine J.; O'Brien, Terrence J.; Williams, David A.

In: Journal of Neuroinflammation, Vol. 13, 173, 30.06.2016.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Interleukin-1β has trophic effects in microglia and its release is mediated by P2X7R pore

AU - Monif, Mastura

AU - Reid, Christopher A.

AU - Powell, Kim L.

AU - Drummond, Katherine J.

AU - O'Brien, Terrence J.

AU - Williams, David A.

PY - 2016/6/30

Y1 - 2016/6/30

N2 - Background: Enhanced expression of the purinergic P2X7 receptor (P2X7R) occurs in several neuroinflammatory conditions where increased microglial activation is a co-existing feature. P2X7 receptors can function either as a cation channel or, upon continued stimulation, a large pore. P2X7R-over-expression alone is sufficient to drive microglial activation and proliferation in a process that is P2X7R pore dependent, although the biological signaling pathway through which this occurs remains unclear. Once activated, microglia are known to release a number of bioactive substances that include the proinflammatory cytokine interleukin-1β (IL-1β). Previous studies have linked P2X7R stimulation to the processing and release of IL-1β, but whether the channel or pore state of P2X7R is predominant in driving IL-1β release is unknown and is a major aim of this study. In addition, we will determine whether IL-1β has trophic effects on surrounding microglia. Methods: Electron microscopy and immunohistochemistry were used to delineate the sub-cellular localization of P2X7R and IL-1β in primary hippocampal rat cultures. FM1-43 fluorescent dye and confocal microscopy were used to quantify vesicular exocytosis from microglia expressing the pore-forming P2X7R versus a non-pore-forming point mutant, P2X7RG345Y. IL-1β in culture was quantified with an enzyme-linked immunosorbent assay (ELISA). IL-1β intracellular processing was blocked with inhibition of caspase 1 (with a synthetic peptide antagonist), and its extracellular form was neutralized with an IL-1β neutralizing antibody. Microglial activation and proliferation was quantified immunohistochemically with confocal microscopy. Results: P2X7R and IL-1β were co-localized in lysosomes. Vesicular exocytosis was higher in microglia expressing the pore-forming P2X7R compared to those expressing the non-pore-forming mutant. There was increased IL-1β in cultures expressing the pore-forming P2X7R, and this proinflammatory cytokine was found to mediate the trophic effects of P2X7R pore in microglia. Inhibition of IL-1β production and function resulted in a significant decrease in P2X7R-mediated microglial activation and proliferation. Conclusions: IL-1β is a mediator of microglial activation and proliferation, and its release/production is P2X7R pore dependent. Blockade of P2X7R pore could serve as a therapeutic target in alleviating the degree of inflammation seen in neurodegenerative and neoplastic conditions.

AB - Background: Enhanced expression of the purinergic P2X7 receptor (P2X7R) occurs in several neuroinflammatory conditions where increased microglial activation is a co-existing feature. P2X7 receptors can function either as a cation channel or, upon continued stimulation, a large pore. P2X7R-over-expression alone is sufficient to drive microglial activation and proliferation in a process that is P2X7R pore dependent, although the biological signaling pathway through which this occurs remains unclear. Once activated, microglia are known to release a number of bioactive substances that include the proinflammatory cytokine interleukin-1β (IL-1β). Previous studies have linked P2X7R stimulation to the processing and release of IL-1β, but whether the channel or pore state of P2X7R is predominant in driving IL-1β release is unknown and is a major aim of this study. In addition, we will determine whether IL-1β has trophic effects on surrounding microglia. Methods: Electron microscopy and immunohistochemistry were used to delineate the sub-cellular localization of P2X7R and IL-1β in primary hippocampal rat cultures. FM1-43 fluorescent dye and confocal microscopy were used to quantify vesicular exocytosis from microglia expressing the pore-forming P2X7R versus a non-pore-forming point mutant, P2X7RG345Y. IL-1β in culture was quantified with an enzyme-linked immunosorbent assay (ELISA). IL-1β intracellular processing was blocked with inhibition of caspase 1 (with a synthetic peptide antagonist), and its extracellular form was neutralized with an IL-1β neutralizing antibody. Microglial activation and proliferation was quantified immunohistochemically with confocal microscopy. Results: P2X7R and IL-1β were co-localized in lysosomes. Vesicular exocytosis was higher in microglia expressing the pore-forming P2X7R compared to those expressing the non-pore-forming mutant. There was increased IL-1β in cultures expressing the pore-forming P2X7R, and this proinflammatory cytokine was found to mediate the trophic effects of P2X7R pore in microglia. Inhibition of IL-1β production and function resulted in a significant decrease in P2X7R-mediated microglial activation and proliferation. Conclusions: IL-1β is a mediator of microglial activation and proliferation, and its release/production is P2X7R pore dependent. Blockade of P2X7R pore could serve as a therapeutic target in alleviating the degree of inflammation seen in neurodegenerative and neoplastic conditions.

KW - Activation

KW - Interleukin-1β

KW - Microglia

KW - Neuroinflammation

KW - P2X7 receptor

KW - P2X7R pore

KW - Proliferation

UR - http://www.scopus.com/inward/record.url?scp=84976869195&partnerID=8YFLogxK

U2 - 10.1186/s12974-016-0621-8

DO - 10.1186/s12974-016-0621-8

M3 - Article

VL - 13

JO - Journal of Neuroinflammation

JF - Journal of Neuroinflammation

SN - 1742-2094

M1 - 173

ER -