Interaction of purified actin-binding protein with the platelet membrane glycoprotein Ib-IX complex

Robert K. Andrews, Joan E B Fox

Research output: Contribution to journalArticleResearchpeer-review

77 Citations (Scopus)

Abstract

The interaction of platelet membrane glycoprotein (GP) Ib-IX complex with the cytoplasmic membrane skeleton is potentially of major importance in regulating platelet function. Indirect evidence suggested that this interaction is mediated by actin-binding protein, but it is not known whether GP Ib-IX and actin-binding protein associate directly. To examine more closely the nature of this association, purified GP Ib-IX complex was specifically bound and oriented on the surface of impermeable polymer beads via a monoclonal antibody, AK 2, directed against the extracytoplasmic domain of GP Ibα (glycocalicin). Binding was specific since 1) it was abolished by excess unlabeled actin-binding protein; 2) there was no detectable specific binding of radiolabeled actin-binding protein to beads coated with glycocalicin, the major extracytoplasmic proteolytic fragment of GP Ibα; and 3) unlike actin-binding protein, there was no specific binding of bovine serum albumin or human platelet vinculin to the GP Ib-IX complex-coated beads. Binding of actin-binding protein to the GP Ib-IX complex-coated beads, but not to the glycocalicin-coated beads, was saturable and reversible (apparent Kd = 1 × 10-7 M). These experiments provide direct evidence that actin-binding protein can bind to the cytoplasmic domain of a membrane glycoprotein. Because actin-binding protein is found submembranously in cells other than the platelet, it is possible that this protein may link actin filaments to the plasma membrane in those cells.

Original languageEnglish
Pages (from-to)7144-7147
Number of pages4
JournalJournal of Biological Chemistry
Volume266
Issue number11
Publication statusPublished - 1 Dec 1991
Externally publishedYes

Cite this