Abstract
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
Original language | English |
---|---|
Pages (from-to) | 1962-1985.e31 |
Number of pages | 56 |
Journal | Cell |
Volume | 183 |
Issue number | 7 |
DOIs | |
Publication status | Published - 23 Dec 2020 |
Externally published | Yes |
Keywords
- BRAF alteration
- CPTAC
- CTNNB1 mutation
- kinase activity score
- kinase substrate regulation
- pediatric brain tumor
- post-translational modification
- proteomic cluster
- recurrent versus primary tumors
- tumor microenvironment
Access to Document
Other files and links
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Cell, Vol. 183, No. 7, 23.12.2020, p. 1962-1985.e31.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer
AU - Petralia, Francesca
AU - Tignor, Nicole
AU - Reva, Boris
AU - Koptyra, Mateusz
AU - Chowdhury, Shrabanti
AU - Rykunov, Dmitry
AU - Krek, Azra
AU - Ma, Weiping
AU - Zhu, Yuankun
AU - Ji, Jiayi
AU - Calinawan, Anna
AU - Whiteaker, Jeffrey R.
AU - Colaprico, Antonio
AU - Stathias, Vasileios
AU - Omelchenko, Tatiana
AU - Song, Xiaoyu
AU - Raman, Pichai
AU - Guo, Yiran
AU - Brown, Miguel A.
AU - Ivey, Richard G.
AU - Szpyt, John
AU - Guha Thakurta, Sanjukta
AU - Gritsenko, Marina A.
AU - Weitz, Karl K.
AU - Lopez, Gonzalo
AU - Kalayci, Selim
AU - Gümüş, Zeynep H.
AU - Yoo, Seungyeul
AU - da Veiga Leprevost, Felipe
AU - Chang, Hui Yin
AU - Krug, Karsten
AU - Katsnelson, Lizabeth
AU - Wang, Ying
AU - Kennedy, Jacob J.
AU - Voytovich, Uliana J.
AU - Zhao, Lei
AU - Gaonkar, Krutika S.
AU - Ennis, Brian M.
AU - Zhang, Bo
AU - Baubet, Valerie
AU - Tauhid, Lamiya
AU - Lilly, Jena V.
AU - Mason, Jennifer L.
AU - Farrow, Bailey
AU - Young, Nathan
AU - Leary, Sarah
AU - Moon, Jamie
AU - Petyuk, Vladislav A.
AU - Nazarian, Javad
AU - Adappa, Nithin D.
AU - Palmer, James N.
AU - Lober, Robert M.
AU - Rivero-Hinojosa, Samuel
AU - Wang, Liang Bo
AU - Wang, Joshua M.
AU - Broberg, Matilda
AU - Chu, Rosalie K.
AU - Moore, Ronald J.
AU - Monroe, Matthew E.
AU - Zhao, Rui
AU - Smith, Richard D.
AU - Zhu, Jun
AU - Robles, Ana I.
AU - Mesri, Mehdi
AU - Boja, Emily
AU - Hiltke, Tara
AU - Rodriguez, Henry
AU - Zhang, Bing
AU - Schadt, Eric E.
AU - Mani, D. R.
AU - Ding, Li
AU - Iavarone, Antonio
AU - Wiznerowicz, Maciej
AU - Schürer, Stephan
AU - Chen, Xi S.
AU - Heath, Allison P.
AU - Rokita, Jo Lynne
AU - Nesvizhskii, Alexey I.
AU - Fenyö, David
AU - Rodland, Karin D.
AU - Liu, Tao
AU - Gygi, Steven P.
AU - Paulovich, Amanda G.
AU - Resnick, Adam C.
AU - Storm, Phillip B.
AU - Rood, Brian R.
AU - Wang, Pei
AU - Francis, Alicia
AU - Morgan, Allison M.
AU - Waanders, Angela J.
AU - Viaene, Angela N.
AU - Buccoliero, Anna Maria
AU - Chinnaiyan, Arul M.
AU - Leonard, Carina A.
AU - Kline, Cassie N.
AU - Caporalini, Chiara
AU - Kinsinger, Christopher R.
AU - Li, Chunde
AU - Kram, David E.
AU - Hanson, Derek
AU - Appert, Elizabeth
AU - Kawaler, Emily A.
AU - Raabe, Eric H.
AU - Jackson, Eric M.
AU - Greenfield, Jeffrey P.
AU - Stone, Gabrielle S.
AU - Getz, Gad
AU - Grant, Gerald
AU - Teo, Guo Ci
AU - Pollack, Ian F.
AU - Cain, Jason E.
AU - Foster, Jessica B.
AU - Phillips, Joanna J.
AU - Palma, July E.
AU - Ketchum, Karen A.
AU - Ruggles, Kelly V.
AU - Blumenberg, Lili
AU - Cornwell, Macintosh
AU - Sarmady, Mahdi
AU - Domagalski, Marcin J.
AU - Cieślik, Marcin P.
AU - Santi, Mariarita
AU - Li, Marilyn M.
AU - Ellis, Matthew J.
AU - Wyczalkowski, Matthew A.
AU - Connors, Meghan
AU - Scagnet, Mirko
AU - Gupta, Nalin
AU - Edwards, Nathan J.
AU - Vitanza, Nicholas A.
AU - Vaske, Olena M.
AU - Becher, Oren
AU - McGarvey, Peter B.
AU - Firestein, Ron
AU - Mueller, Sabine
AU - Winebrake, Samuel G.
AU - Dhanasekaran, Saravana Mohan
AU - Cai, Shuang
AU - Partap, Sonia
AU - Patton, Tatiana
AU - Le, Toan
AU - Lorentzen, Travis D.
AU - Liu, Wenke
AU - Bocik, William E.
AU - Children's Brain Tumor Network
AU - Clinical Proteomic Tumor Analysis Consortium
N1 - Funding Information: This work was supported by the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) grants U24CA210993, U01 CA214114, U24CA210967, U24CA210954, U24CA210972, U24CA210955, U24CA210979, and R50 CA211499. We would like to thank the children and their families for donating tumor samples for this study, the Children's Brain Tumor Network, and Dr. David Stokes and the entire Biorepository Resource Center (BioRC) at Children's Hospital of Philadelphia. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. The MS-based proteomic analysis of the Project Hope brain tumor samples was performed at the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy National Scientific User Facility located at the Pacific Northwest National Laboratory in Richland, WA, operated by the Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830. Study Conception & Design, H.R. A.C.R. A.G.P. S.P.G. P.B.S. B.R.R. and P.W.; Experiments and Data Collection, M.K. Y.Z. A.P.H. J.L.R. J.L.M. J.V.L. B.F. N.Y. A.C.R. S.P.G. S.G.T. J.S. A.G.P. U.J.V. L.Z. J.J.K. R.G.I. J.R.W. M.A.G. K.K.W. J.L.M. V.A.P. R.K.C. R.J.M. M.E.M. R.Z. R.D.S. K.D.R. and T.L.; Data Analysis, M.A.B. Y.G. K.S.G. P.R. B.M.E. B.Z. Y.Z. F.d.V.L. H.-Y.C. A.I.N. F.P. A.I. N.T. S.C. W.M. J.J. X.S. B.R. D.R. A.K. P.W. G.L. S.Y. J.Z, V.S. S.S. A. Colaprico. X.S.C. B.R. A.C.R. D.F. M.B. J.M.W. Y.W. L.-B.W. M.W. and L.K.; Sample Resources, A.C.R. J.V.L. J.L.M. P.B.S. V.B. and L.T.; Writing, F.P, N.T. M.K. S.C. W.M. M.A.B. K.S.G. J.L.R. D.R. A.K. X.S. J.J. S.Y. A.C.R. B.R.R. and P.W.; Visualization, S.K. G.L. Z.H.G. A. Calinawan, F.P. D.R. A.K. N.T. W.M. S.C. X.S. and J.J.; Supervision, P.W. B.R.R. A.C.R. A.G.P. S.P.G. J.L.R. Y.Z. M.K. A.P.H. P.B.S. and D.F.; Project Administration, P.W. H.R. E.B. T.H. M.M. F.P. N.T. B.R.R. and A.C.R.; Funding Acquisition, P.W. B.R.R. P.B.S. A.C.R. A.G.P. S.P.G. T.L. R.D.S. D.F. A.I.N. L.D. D.R.M. E.E.S. B.Z. and H.R. All authors contributed to data interpretation, manuscript editing, and revision. E.E.S. serves as chief executive officer for Sema4 and has an equity interest in this company. Funding Information: This work was supported by the National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) grants U24CA210993 , U01 CA214114 , U24CA210967 , U24CA210954 , U24CA210972 , U24CA210955 , U24CA210979 , and R50 CA211499 . We would like to thank the children and their families for donating tumor samples for this study, the Children’s Brain Tumor Network, and Dr. David Stokes and the entire Biorepository Resource Center (BioRC) at Children’s Hospital of Philadelphia. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai. The MS-based proteomic analysis of the Project Hope brain tumor samples was performed at the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy National Scientific User Facility located at the Pacific Northwest National Laboratory in Richland, WA, operated by the Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830. Publisher Copyright: © 2020 Elsevier Inc.
PY - 2020/12/23
Y1 - 2020/12/23
N2 - We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
AB - We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
KW - BRAF alteration
KW - CPTAC
KW - CTNNB1 mutation
KW - kinase activity score
KW - kinase substrate regulation
KW - pediatric brain tumor
KW - post-translational modification
KW - proteomic cluster
KW - recurrent versus primary tumors
KW - tumor microenvironment
UR - http://www.scopus.com/inward/record.url?scp=85097475909&partnerID=8YFLogxK
U2 - 10.1016/j.cell.2020.10.044
DO - 10.1016/j.cell.2020.10.044
M3 - Article
C2 - 33242424
AN - SCOPUS:85097475909
SN - 0092-8674
VL - 183
SP - 1962-1985.e31
JO - Cell
JF - Cell
IS - 7
ER -