TY - JOUR
T1 - Integrated genetic, epigenetic, and transcriptional profiling identifies molecular pathways in the development of laterally spreading tumors
AU - Hesson, Luke B.
AU - Ng, Benedict
AU - Zarzour, Peter
AU - Srivastava, Sameer
AU - Kwok, Chau To
AU - Packham, Deborah
AU - Nunez, Andrea C.
AU - Beck, Dominik
AU - Ryan, Regina
AU - Dower, Ashraf
AU - Ford, Caroline E.
AU - Pimanda, John E.
AU - Sloane, Mathew A.
AU - Hawkins, Nicholas J.
AU - Bourke, Michael J.
AU - Wong, Jason W.H.
AU - Ward, Robyn L.
N1 - Publisher Copyright:
©2016 AACR.
PY - 2016/12
Y1 - 2016/12
N2 - Laterally spreading tumors (LST) are colorectal adenomas that develop into extremely large lesions with predominantly slow progression to cancer, depending on lesion subtype. Comparing and contrasting the molecular profiles of LSTs and colorectal cancers offers an opportunity to delineate key molecular alterations that drive malignant transformation in the colorectum. In a discovery cohort of 11 LSTs and paired normal mucosa, we performed a comprehensive and unbiased screen of the genome, epigenome, and transcriptome followed by bioinformatics integration of these data and validation in an additional 84 large, benign colorectal lesions. Mutation rates in LSTs were comparable with microsatellite-stable colorectal cancers (2.4 vs. 2.6 mutations per megabase); however, copy number alterations were infrequent (averaging only 1.5 per LST). Frequent genetic, epigenetic, and transcriptional alterations were identified in genes not previously implicated in colorectal neoplasia (ANO5, MED12L, EPB41L4A, RGMB, SLITRK1, SLITRK5, NRXN1, ANK2). Alterations to pathways commonly mutated in colorectal cancers, namely, the p53, PI3K, and TGFβ pathways, were rare. Instead, LST-altered genes converged on axonal guidance, Wnt, and actin cytoskeleton signaling. These integrated omics data identify molecular features associated with noncancerous LSTs and highlight that mutation load, which is relatively high in LSTs, is a poor predictor of invasive potential. Implications: The novel genetic, epigenetic, and transcriptional changes associated with LST development reveal important insights into why some adenomas do not progress to cancer. The finding that LSTs exhibit a mutational load similar to colorectal carcinomas has implications for the validity of molecular biomarkers for assessing cancer risk.
AB - Laterally spreading tumors (LST) are colorectal adenomas that develop into extremely large lesions with predominantly slow progression to cancer, depending on lesion subtype. Comparing and contrasting the molecular profiles of LSTs and colorectal cancers offers an opportunity to delineate key molecular alterations that drive malignant transformation in the colorectum. In a discovery cohort of 11 LSTs and paired normal mucosa, we performed a comprehensive and unbiased screen of the genome, epigenome, and transcriptome followed by bioinformatics integration of these data and validation in an additional 84 large, benign colorectal lesions. Mutation rates in LSTs were comparable with microsatellite-stable colorectal cancers (2.4 vs. 2.6 mutations per megabase); however, copy number alterations were infrequent (averaging only 1.5 per LST). Frequent genetic, epigenetic, and transcriptional alterations were identified in genes not previously implicated in colorectal neoplasia (ANO5, MED12L, EPB41L4A, RGMB, SLITRK1, SLITRK5, NRXN1, ANK2). Alterations to pathways commonly mutated in colorectal cancers, namely, the p53, PI3K, and TGFβ pathways, were rare. Instead, LST-altered genes converged on axonal guidance, Wnt, and actin cytoskeleton signaling. These integrated omics data identify molecular features associated with noncancerous LSTs and highlight that mutation load, which is relatively high in LSTs, is a poor predictor of invasive potential. Implications: The novel genetic, epigenetic, and transcriptional changes associated with LST development reveal important insights into why some adenomas do not progress to cancer. The finding that LSTs exhibit a mutational load similar to colorectal carcinomas has implications for the validity of molecular biomarkers for assessing cancer risk.
UR - http://www.scopus.com/inward/record.url?scp=85003811057&partnerID=8YFLogxK
U2 - 10.1158/1541-7786.MCR-16-0175
DO - 10.1158/1541-7786.MCR-16-0175
M3 - Article
C2 - 27671336
AN - SCOPUS:85003811057
SN - 1541-7786
VL - 14
SP - 1217
EP - 1228
JO - Molecular Cancer Research
JF - Molecular Cancer Research
IS - 12
ER -