Instability of planetary waves and zonal flows in two‐layer models on a sphere

J. S. Frederiksen

Research output: Contribution to journalArticleOther

22 Citations (Scopus)

Abstract

A study is made of the stability of finite amplitude planetary waves by themselves and together with zonal flows in two‐layer quasi‐geostrophic models on a sphere. Critical amplitudes for incipient instability of baroclinic waves, growth rates, perturbation streamfunctions and momentum fluxes are obtained and are compared with the corresponding properties for barotropic waves in the nondivergent barotropic model. The change in the growth rates, perturbation streamfunctions, momentum and heat fluxes due to the superposition of basic planetary waves on zonal flow profiles is examined in two‐layer quasi‐geostrophic models. The presence of the long planetary waves is found to produce regions of preferential development of cyclones and anticyclones. The position of the most intense development, downstream from the long wave troughs or ridges depending on the basic flow profile, is shown to be related to Phillips's criterion for incipient instability. It is also found that the largest of all the growth rates is increased in the presence of baroclinic waves but decreased in the presence of barotropic waves and it is concluded that baroclinic instability, rather than barotropic instability, is the most important factor in the unpredictability of largescale atmospheric motions. Barotropic waves, however, produce larger changes in the disturbance stream‐functions, momentum and heat fluxes; in particular, when superimposed on solid body rotation zonal flow profiles, they may produce zonally averaged perturbation momentum fluxes with both poleward and equatorward components. The presence of planetary waves in the basic profile removes the short wave instability cutoff characteristic of two‐layer quasi‐geostrophic models with purely zonal flow basic profiles.

Original languageEnglish
Pages (from-to)841-872
Number of pages32
JournalQuarterly Journal of the Royal Meteorological Society
Volume104
Issue number442
DOIs
Publication statusPublished - 1978
Externally publishedYes

Cite this

@article{cbf91dad68b346ad9ddaea1581ec721e,
title = "Instability of planetary waves and zonal flows in two‐layer models on a sphere",
abstract = "A study is made of the stability of finite amplitude planetary waves by themselves and together with zonal flows in two‐layer quasi‐geostrophic models on a sphere. Critical amplitudes for incipient instability of baroclinic waves, growth rates, perturbation streamfunctions and momentum fluxes are obtained and are compared with the corresponding properties for barotropic waves in the nondivergent barotropic model. The change in the growth rates, perturbation streamfunctions, momentum and heat fluxes due to the superposition of basic planetary waves on zonal flow profiles is examined in two‐layer quasi‐geostrophic models. The presence of the long planetary waves is found to produce regions of preferential development of cyclones and anticyclones. The position of the most intense development, downstream from the long wave troughs or ridges depending on the basic flow profile, is shown to be related to Phillips's criterion for incipient instability. It is also found that the largest of all the growth rates is increased in the presence of baroclinic waves but decreased in the presence of barotropic waves and it is concluded that baroclinic instability, rather than barotropic instability, is the most important factor in the unpredictability of largescale atmospheric motions. Barotropic waves, however, produce larger changes in the disturbance stream‐functions, momentum and heat fluxes; in particular, when superimposed on solid body rotation zonal flow profiles, they may produce zonally averaged perturbation momentum fluxes with both poleward and equatorward components. The presence of planetary waves in the basic profile removes the short wave instability cutoff characteristic of two‐layer quasi‐geostrophic models with purely zonal flow basic profiles.",
author = "Frederiksen, {J. S.}",
year = "1978",
doi = "10.1002/qj.49710444202",
language = "English",
volume = "104",
pages = "841--872",
journal = "Quarterly Journal of the Royal Meteorological Society",
issn = "0035-9009",
publisher = "John Wiley & Sons",
number = "442",

}

Instability of planetary waves and zonal flows in two‐layer models on a sphere. / Frederiksen, J. S.

In: Quarterly Journal of the Royal Meteorological Society, Vol. 104, No. 442, 1978, p. 841-872.

Research output: Contribution to journalArticleOther

TY - JOUR

T1 - Instability of planetary waves and zonal flows in two‐layer models on a sphere

AU - Frederiksen, J. S.

PY - 1978

Y1 - 1978

N2 - A study is made of the stability of finite amplitude planetary waves by themselves and together with zonal flows in two‐layer quasi‐geostrophic models on a sphere. Critical amplitudes for incipient instability of baroclinic waves, growth rates, perturbation streamfunctions and momentum fluxes are obtained and are compared with the corresponding properties for barotropic waves in the nondivergent barotropic model. The change in the growth rates, perturbation streamfunctions, momentum and heat fluxes due to the superposition of basic planetary waves on zonal flow profiles is examined in two‐layer quasi‐geostrophic models. The presence of the long planetary waves is found to produce regions of preferential development of cyclones and anticyclones. The position of the most intense development, downstream from the long wave troughs or ridges depending on the basic flow profile, is shown to be related to Phillips's criterion for incipient instability. It is also found that the largest of all the growth rates is increased in the presence of baroclinic waves but decreased in the presence of barotropic waves and it is concluded that baroclinic instability, rather than barotropic instability, is the most important factor in the unpredictability of largescale atmospheric motions. Barotropic waves, however, produce larger changes in the disturbance stream‐functions, momentum and heat fluxes; in particular, when superimposed on solid body rotation zonal flow profiles, they may produce zonally averaged perturbation momentum fluxes with both poleward and equatorward components. The presence of planetary waves in the basic profile removes the short wave instability cutoff characteristic of two‐layer quasi‐geostrophic models with purely zonal flow basic profiles.

AB - A study is made of the stability of finite amplitude planetary waves by themselves and together with zonal flows in two‐layer quasi‐geostrophic models on a sphere. Critical amplitudes for incipient instability of baroclinic waves, growth rates, perturbation streamfunctions and momentum fluxes are obtained and are compared with the corresponding properties for barotropic waves in the nondivergent barotropic model. The change in the growth rates, perturbation streamfunctions, momentum and heat fluxes due to the superposition of basic planetary waves on zonal flow profiles is examined in two‐layer quasi‐geostrophic models. The presence of the long planetary waves is found to produce regions of preferential development of cyclones and anticyclones. The position of the most intense development, downstream from the long wave troughs or ridges depending on the basic flow profile, is shown to be related to Phillips's criterion for incipient instability. It is also found that the largest of all the growth rates is increased in the presence of baroclinic waves but decreased in the presence of barotropic waves and it is concluded that baroclinic instability, rather than barotropic instability, is the most important factor in the unpredictability of largescale atmospheric motions. Barotropic waves, however, produce larger changes in the disturbance stream‐functions, momentum and heat fluxes; in particular, when superimposed on solid body rotation zonal flow profiles, they may produce zonally averaged perturbation momentum fluxes with both poleward and equatorward components. The presence of planetary waves in the basic profile removes the short wave instability cutoff characteristic of two‐layer quasi‐geostrophic models with purely zonal flow basic profiles.

UR - http://www.scopus.com/inward/record.url?scp=84987059634&partnerID=8YFLogxK

U2 - 10.1002/qj.49710444202

DO - 10.1002/qj.49710444202

M3 - Article

VL - 104

SP - 841

EP - 872

JO - Quarterly Journal of the Royal Meteorological Society

JF - Quarterly Journal of the Royal Meteorological Society

SN - 0035-9009

IS - 442

ER -