Insights from simulations into mechanisms for density segregation of granular mixtures in rotating cylinders

Gerald G Pereira, Matthew D Sinnott, P.W. Cleary, Kurt Liffman, Guy Metcalfe, Ilija Sutalo

Research output: Contribution to journalArticleResearchpeer-review

42 Citations (Scopus)

Abstract

The Discrete Element Method (DEM) is used to study the segregation of a binary mixture of differing density (but same size) granular material in an axially rotating cylinder. The rotation rates used produce a flow that is on the borderline between the avalanching and rolling regimes. The simulations replicate the experimental data well at both qualitative and quantitative levels. Both wall-induced and radial segregation are observed. The simulations show segregation is delineated into two main time regimes. At early times segregation is rapid (when the dense core is being established) and slows down appreciably thereafter. The final asymptotic state is found to be independent of the initial segregation state of the particles. We compare these results with previous theoretical models and relate these two distinct time regimes to the underlying segregation mechanisms. These comparisons suggest segregation varies as a function of two fundamental quantities (a) density ratio of particles and (b) angular speed of the rotating cylinder. It is shown that maximal segregation occurs for specific ranges of these quantities.
Original languageEnglish
Pages (from-to)53-74
Number of pages22
JournalGranular Matter
Volume13
Issue number1
DOIs
Publication statusPublished - 2011
Externally publishedYes

Keywords

  • Density segregation
  • Discrete element method
  • Granular flow
  • Rotating drum

Cite this