Informativity in image captions vs. referring expressions

Elizabeth Coppock, Danielle Dionne, Nathanial Graham, Elias Ganem, Shijie Zhao, Shawn Lin, Wenxing Liu, Derry Wijaya

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

Abstract

At the intersection between computer vision and natural language processing, there has been recent progress on two natural language generation tasks: Dense Image Captioning and Referring Expression Generation for objects in complex scenes. The former aims to provide a caption for a specified object in a complex scene for the benefit of an interlocutor who may not be able to see it. The latter aims to produce a referring expression that will serve to identify a given object in a scene that the interlocutor can see. The two tasks are designed for different assumptions about the common ground between the interlocutors, and serve very different purposes, although they both associate a linguistic description with an object in a complex scene. Despite these fundamental differences, the distinction between these two tasks is sometimes overlooked. Here, we undertake a side-by-side comparison between image captioning and reference game human datasets and show that they differ systematically with respect to informativity. We hope that an understanding of the systematic differences among these human datasets will ultimately allow them to be leveraged more effectively in the associated engineering tasks.
Original languageEnglish
Title of host publicationPaM 2020, Proceedings of the Probability and Meaning Conference
EditorsChristine Howes, Stergios Chatzikyriakidis, Adam Ek, Vidya Somashekarappa
Place of PublicationStroudsburg PA USA
PublisherAssociation for Computational Linguistics (ACL)
Pages104-108
Number of pages5
Publication statusPublished - 2020
Externally publishedYes
EventConference on Probability and Meaning 2020 - Sweden, Sweden
Duration: 14 Oct 202015 Oct 2020
https://aclanthology.org/2020.pam-1.0/ (Proceedings)
https://sites.google.com/view/pam2020/home (Website)

Conference

ConferenceConference on Probability and Meaning 2020
Abbreviated titlePaM 2020
Country/TerritorySweden
CitySweden
Period14/10/2015/10/20
Internet address

Cite this