Influence of satellite data uncertainties on the detection of externally forced climate change

B. D. Santer, T. M.L. Wigley, G. A. Meehl, M. F. Wehner, C. Mears, M. Schabel, F. J. Wentz, C. Ammann, J. Arblaster, T. Bettge, W. M. Washington, K. E. Taylor, J. S. Boyle, W. Brüggemann, C. Doutriaux

Research output: Contribution to journalArticleResearchpeer-review

59 Citations (Scopus)

Abstract

Two independent analyses of the same satellite-based radiative emissions data yield tropospheric temperature trends that differ by 0.1°C per decade over 1979 to 2001. The troposphere warms appreciably in one satellite data set, while the other data set shows little overall change. These satellite data uncertainties are important in studies seeking to identify human effects on climate. A modelpredicted "fingerprint" of combined anthropogenic and natural effects is statistically detectable only in the satellite data set with a warming troposphere. Our findings show that claimed inconsistencies between model predictions and satellite tropospheric temperature data (and between the latter and surface data) may be an artifact of data uncertainties.

Original languageEnglish
Pages (from-to)1280-1284
Number of pages5
JournalScience
Volume300
Issue number5623
DOIs
Publication statusPublished - 23 May 2003
Externally publishedYes

Cite this