Influence of nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete

Wengui Li, Zhengyu Huang, Tianyu Zu, Caijun Shi, Wen Hui Duan, Surendra P. Shah

Research output: Contribution to journalArticleResearchpeer-review

74 Citations (Scopus)


The influence of nanolimestone/nanoCaCo3 (NC) on the properties of ultrahigh-performance concrete (UHPC) cured at standard and heat conditions was experimentally investigated. The NC was used at ratios of 1, 2, and 3% as partial mass replacement for cement. Incorporating NC accelerated the hydration reactions of UHPC because of the nucleation effect. On the mechanical properties aspect, a threshold value of the NC content was found so that the compressive, flexural strengths, and flexural to compressive strength ratio of the UHPC were found to increase as the NC content increased towards the threshold content, and then to decrease with the increase of NC contents when the threshold was surpassed. Conversely, replacing cement with NC decreased flowability and increased the amount of autogenous shrinkage of the UHPC. While the NC accelerated the cement hydration process, it also acted as an effective filling material, resulting in enhanced mechanical properties and denser microstructure compared with the control UHPC mixture. Thus, through the use of NC, more environmentally friendly UHPC can be produced by reducing its cement factor and achieving enhanced engineering properties.

Original languageEnglish
Article number04015068
Number of pages9
JournalJournal of Materials in Civil Engineering
Issue number1
Publication statusPublished - 1 Jan 2016


  • Autogenous shrinkage
  • Hydration
  • Microstructure
  • Nano
  • nanolimestone/nanoCaCo3
  • Ultrahigh-performance concrete (UHPC)

Cite this