TY - JOUR
T1 - Influence of monomer type on miniemulsion polymerization systems stabilized by graphene oxide as sole surfactant
AU - Man, S H Che
AU - Yusof, N Y Mohd
AU - Whittaker, Michael Raymond
AU - Thickett, Stuart C
AU - Zetterlund, Per B
PY - 2013
Y1 - 2013
N2 - Based on a recent report [J. Polym. Sci. Part A. Polym. Chem. 2013, 51, 47-58] whereby we demonstrated the synthesis of polystyrene nanoparticles by miniemulsion polymerization stabilized by graphene oxide (GO) nanosheets as sole surfactant, we hereby report the synthesis of hybrid polymer nanoparticles of several members of the (meth)acrylate family as well as the cross-linker divinylbenzene via the same approach. The nature of the resultant emulsion is strongly linked to the polarity of the monomer used; monomers with a relatively small polar component (based on Hansen solubility parameters) such as lauryl methacrylate and benzyl methacrylate, in addition to styrene, generate stable emulsions that can be effectively polymerized. Particularly polar monomers (e.g., methyl acrylate and methyl methacrylate) formed kinetically stable emulsions in the presence of GO, however rapid coagulation occurred during polymerization. Electron microscopy analysis reveals the formation of polymer nanoparticles with size distribution between 200 and 1000 nm with roughened surface morphologies, indicative of GO sheets adsorbed at the interface. The results of this work demonstrate the applicability of this synthetic route for specific monomers in the preparation of novel graphene-based polymeric materials. Copyright ? 2013 Wiley Periodicals, Inc
AB - Based on a recent report [J. Polym. Sci. Part A. Polym. Chem. 2013, 51, 47-58] whereby we demonstrated the synthesis of polystyrene nanoparticles by miniemulsion polymerization stabilized by graphene oxide (GO) nanosheets as sole surfactant, we hereby report the synthesis of hybrid polymer nanoparticles of several members of the (meth)acrylate family as well as the cross-linker divinylbenzene via the same approach. The nature of the resultant emulsion is strongly linked to the polarity of the monomer used; monomers with a relatively small polar component (based on Hansen solubility parameters) such as lauryl methacrylate and benzyl methacrylate, in addition to styrene, generate stable emulsions that can be effectively polymerized. Particularly polar monomers (e.g., methyl acrylate and methyl methacrylate) formed kinetically stable emulsions in the presence of GO, however rapid coagulation occurred during polymerization. Electron microscopy analysis reveals the formation of polymer nanoparticles with size distribution between 200 and 1000 nm with roughened surface morphologies, indicative of GO sheets adsorbed at the interface. The results of this work demonstrate the applicability of this synthetic route for specific monomers in the preparation of novel graphene-based polymeric materials. Copyright ? 2013 Wiley Periodicals, Inc
UR - http://onlinelibrary.wiley.com/doi/10.1002/pola.26947/abstract
U2 - 10.1002/pola.26947
DO - 10.1002/pola.26947
M3 - Article
SN - 0887-624X
VL - 51
SP - 5153
EP - 5162
JO - Journal of Polymer Science, Part A: Polymer Chemistry
JF - Journal of Polymer Science, Part A: Polymer Chemistry
IS - 23
ER -