Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk

David P.Q. Clark, Victoria M. Perreau, Sandy R. Shultz, Rhys D. Brady, Enie Lei, Shilpi Dixit, Juliet M. Taylor, Philip M. Beart, Wah Chin Boon

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Traumatic brain injury triggers neuroinflammation that may contribute to progressive neurodegeneration. We investigated patterns of recruitment of astrocytes and microglia to inflammation after brain trauma by firstly characterising expression profiles over time of marker genes following TBI, and secondly by monitoring glial morphologies reflecting inflammatory responses in a rat model of traumatic brain injury (i.e. the lateral fluid percussion injury). Gene expression profiles revealed early elevation of expression of astrocytic marker glial fibrillary acidic protein relative to microglial marker allograft inflammatory factor 1 (also known as ionized calcium-binding adapter molecule 1). Adult rat brains collected at day 7 after injury were processed for immunohistochemistry with allograft inflammatory factor 1, glial fibrillary acidic protein and complement C3 (marker of bad/disruptive astrocytic A1 phenotype). Astrocytes positive for glial fibrillary acidic protein and complement C3 were significant increased in the injured cortex and displayed more complex patterns of arbourisation with significantly increased bifurcations. Our observations suggested that traumatic brain injury changed the phenotype of microglia from a ramified appearance with long, thin, highly branched processes to a swollen amoeboid shape in the injured cortex. These findings suggest differential glial activation with astrocytes likely undergoing strategic changes in morphology and function. Whilst a detailed analysis is needed of temporal patterns of glial activation, ours is the first evidence of a role for the bad/disruptive astrocytic A1 phenotype in an open head model of traumatic brain injury.

Original languageEnglish
Pages (from-to)1410–1424
Number of pages15
JournalNeurochemical Research
Volume44
Issue number6
DOIs
Publication statusPublished - 1 Jun 2019

Keywords

  • Astrocyte
  • Glial crosstalk
  • Inflammation
  • Toxic phenotype
  • Traumatic brain injury

Cite this

Clark, David P.Q. ; Perreau, Victoria M. ; Shultz, Sandy R. ; Brady, Rhys D. ; Lei, Enie ; Dixit, Shilpi ; Taylor, Juliet M. ; Beart, Philip M. ; Boon, Wah Chin. / Inflammation in Traumatic Brain Injury : Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. In: Neurochemical Research. 2019 ; Vol. 44, No. 6. pp. 1410–1424.
@article{92c7260b9c1a4aeaaabf5e84ca7e0529,
title = "Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk",
abstract = "Traumatic brain injury triggers neuroinflammation that may contribute to progressive neurodegeneration. We investigated patterns of recruitment of astrocytes and microglia to inflammation after brain trauma by firstly characterising expression profiles over time of marker genes following TBI, and secondly by monitoring glial morphologies reflecting inflammatory responses in a rat model of traumatic brain injury (i.e. the lateral fluid percussion injury). Gene expression profiles revealed early elevation of expression of astrocytic marker glial fibrillary acidic protein relative to microglial marker allograft inflammatory factor 1 (also known as ionized calcium-binding adapter molecule 1). Adult rat brains collected at day 7 after injury were processed for immunohistochemistry with allograft inflammatory factor 1, glial fibrillary acidic protein and complement C3 (marker of bad/disruptive astrocytic A1 phenotype). Astrocytes positive for glial fibrillary acidic protein and complement C3 were significant increased in the injured cortex and displayed more complex patterns of arbourisation with significantly increased bifurcations. Our observations suggested that traumatic brain injury changed the phenotype of microglia from a ramified appearance with long, thin, highly branched processes to a swollen amoeboid shape in the injured cortex. These findings suggest differential glial activation with astrocytes likely undergoing strategic changes in morphology and function. Whilst a detailed analysis is needed of temporal patterns of glial activation, ours is the first evidence of a role for the bad/disruptive astrocytic A1 phenotype in an open head model of traumatic brain injury.",
keywords = "Astrocyte, Glial crosstalk, Inflammation, Toxic phenotype, Traumatic brain injury",
author = "Clark, {David P.Q.} and Perreau, {Victoria M.} and Shultz, {Sandy R.} and Brady, {Rhys D.} and Enie Lei and Shilpi Dixit and Taylor, {Juliet M.} and Beart, {Philip M.} and Boon, {Wah Chin}",
year = "2019",
month = "6",
day = "1",
doi = "10.1007/s11064-019-02721-8",
language = "English",
volume = "44",
pages = "1410–1424",
journal = "Neurochemical Research",
issn = "0364-3190",
publisher = "Springer-Verlag London Ltd.",
number = "6",

}

Inflammation in Traumatic Brain Injury : Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. / Clark, David P.Q.; Perreau, Victoria M.; Shultz, Sandy R.; Brady, Rhys D.; Lei, Enie; Dixit, Shilpi; Taylor, Juliet M.; Beart, Philip M.; Boon, Wah Chin.

In: Neurochemical Research, Vol. 44, No. 6, 01.06.2019, p. 1410–1424.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Inflammation in Traumatic Brain Injury

T2 - Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk

AU - Clark, David P.Q.

AU - Perreau, Victoria M.

AU - Shultz, Sandy R.

AU - Brady, Rhys D.

AU - Lei, Enie

AU - Dixit, Shilpi

AU - Taylor, Juliet M.

AU - Beart, Philip M.

AU - Boon, Wah Chin

PY - 2019/6/1

Y1 - 2019/6/1

N2 - Traumatic brain injury triggers neuroinflammation that may contribute to progressive neurodegeneration. We investigated patterns of recruitment of astrocytes and microglia to inflammation after brain trauma by firstly characterising expression profiles over time of marker genes following TBI, and secondly by monitoring glial morphologies reflecting inflammatory responses in a rat model of traumatic brain injury (i.e. the lateral fluid percussion injury). Gene expression profiles revealed early elevation of expression of astrocytic marker glial fibrillary acidic protein relative to microglial marker allograft inflammatory factor 1 (also known as ionized calcium-binding adapter molecule 1). Adult rat brains collected at day 7 after injury were processed for immunohistochemistry with allograft inflammatory factor 1, glial fibrillary acidic protein and complement C3 (marker of bad/disruptive astrocytic A1 phenotype). Astrocytes positive for glial fibrillary acidic protein and complement C3 were significant increased in the injured cortex and displayed more complex patterns of arbourisation with significantly increased bifurcations. Our observations suggested that traumatic brain injury changed the phenotype of microglia from a ramified appearance with long, thin, highly branched processes to a swollen amoeboid shape in the injured cortex. These findings suggest differential glial activation with astrocytes likely undergoing strategic changes in morphology and function. Whilst a detailed analysis is needed of temporal patterns of glial activation, ours is the first evidence of a role for the bad/disruptive astrocytic A1 phenotype in an open head model of traumatic brain injury.

AB - Traumatic brain injury triggers neuroinflammation that may contribute to progressive neurodegeneration. We investigated patterns of recruitment of astrocytes and microglia to inflammation after brain trauma by firstly characterising expression profiles over time of marker genes following TBI, and secondly by monitoring glial morphologies reflecting inflammatory responses in a rat model of traumatic brain injury (i.e. the lateral fluid percussion injury). Gene expression profiles revealed early elevation of expression of astrocytic marker glial fibrillary acidic protein relative to microglial marker allograft inflammatory factor 1 (also known as ionized calcium-binding adapter molecule 1). Adult rat brains collected at day 7 after injury were processed for immunohistochemistry with allograft inflammatory factor 1, glial fibrillary acidic protein and complement C3 (marker of bad/disruptive astrocytic A1 phenotype). Astrocytes positive for glial fibrillary acidic protein and complement C3 were significant increased in the injured cortex and displayed more complex patterns of arbourisation with significantly increased bifurcations. Our observations suggested that traumatic brain injury changed the phenotype of microglia from a ramified appearance with long, thin, highly branched processes to a swollen amoeboid shape in the injured cortex. These findings suggest differential glial activation with astrocytes likely undergoing strategic changes in morphology and function. Whilst a detailed analysis is needed of temporal patterns of glial activation, ours is the first evidence of a role for the bad/disruptive astrocytic A1 phenotype in an open head model of traumatic brain injury.

KW - Astrocyte

KW - Glial crosstalk

KW - Inflammation

KW - Toxic phenotype

KW - Traumatic brain injury

UR - http://www.scopus.com/inward/record.url?scp=85060349799&partnerID=8YFLogxK

U2 - 10.1007/s11064-019-02721-8

DO - 10.1007/s11064-019-02721-8

M3 - Article

VL - 44

SP - 1410

EP - 1424

JO - Neurochemical Research

JF - Neurochemical Research

SN - 0364-3190

IS - 6

ER -