TY - JOUR
T1 - Inferred changes in El Nino-Southern Oscillation variance over the past six centuries
AU - McGregor, Shayne
AU - Timmermann, Axel
AU - England, Matthew Heathcote
AU - Timm, Oliver Elison
AU - Wittenberg, Andrew T
PY - 2013
Y1 - 2013
N2 - It is vital to understand how the El Nino-Southern Oscillation (ENSO) has responded to past changes in natural and anthropogenic forcings, in order to better understand and predict its response to future greenhouse warming. To date, however, the instrumental record is too brief to fully characterize natural ENSO variability, while large discrepancies exist amongst paleo-proxy reconstructions of ENSO. These paleo-proxy reconstructions have typically attempted to reconstruct ENSO s temporal evolution, rather than the variance of these temporal changes. Here a new approach is developed that synthesizes the variance changes from various proxy data sets to provide a unified and updated estimate of past ENSO variance. The method is tested using surrogate data from two coupled general circulation model (CGCM) simulations. It is shown that in the presence of dating uncertainties, synthesizing variance information provides a more robust estimate of ENSO variance than synthesizing the raw data and then identifying its running variance. We also examine whether good temporal correspondence between proxy data and instrumental ENSO records implies a good representation of ENSO variance. In the climate modeling framework we show that a significant improvement in reconstructing ENSO variance changes is found when combining information from diverse ENSO-teleconnected source regions, rather than by relying on a single well-correlated location. This suggests that ENSO variance estimates derived from a single site should be viewed with caution. Finally, synthesizing existing ENSO reconstructions to arrive at a better estimate of past ENSO variance changes, we find robust evidence that the ENSO variance for any 30 yr period during the interval 1590-1880 was considerably lower than that observed during 1979-2009. (c) 2013 Author(s).
AB - It is vital to understand how the El Nino-Southern Oscillation (ENSO) has responded to past changes in natural and anthropogenic forcings, in order to better understand and predict its response to future greenhouse warming. To date, however, the instrumental record is too brief to fully characterize natural ENSO variability, while large discrepancies exist amongst paleo-proxy reconstructions of ENSO. These paleo-proxy reconstructions have typically attempted to reconstruct ENSO s temporal evolution, rather than the variance of these temporal changes. Here a new approach is developed that synthesizes the variance changes from various proxy data sets to provide a unified and updated estimate of past ENSO variance. The method is tested using surrogate data from two coupled general circulation model (CGCM) simulations. It is shown that in the presence of dating uncertainties, synthesizing variance information provides a more robust estimate of ENSO variance than synthesizing the raw data and then identifying its running variance. We also examine whether good temporal correspondence between proxy data and instrumental ENSO records implies a good representation of ENSO variance. In the climate modeling framework we show that a significant improvement in reconstructing ENSO variance changes is found when combining information from diverse ENSO-teleconnected source regions, rather than by relying on a single well-correlated location. This suggests that ENSO variance estimates derived from a single site should be viewed with caution. Finally, synthesizing existing ENSO reconstructions to arrive at a better estimate of past ENSO variance changes, we find robust evidence that the ENSO variance for any 30 yr period during the interval 1590-1880 was considerably lower than that observed during 1979-2009. (c) 2013 Author(s).
UR - http://www.clim-past.net/9/2269/2013/cp-9-2269-2013.pdf
U2 - 10.5194/cp-9-2269-2013
DO - 10.5194/cp-9-2269-2013
M3 - Article
SN - 1814-9324
VL - 9
SP - 2269
EP - 2284
JO - Climate of the Past
JF - Climate of the Past
IS - 5
ER -