Infection of zebrafish embryos with intracellular bacterial pathogens

Erica L Benard, Astrid M van der Sar, Felix Ellett, Graham J Lieschke, Herman P Spaink, Annemarie H Meijer

Research output: Contribution to journalArticleResearchpeer-review

107 Citations (Scopus)

Abstract

Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage. The site of micro-injection of bacteria into the embryo determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.
Original languageEnglish
Pages (from-to)1 - 8
Number of pages8
JournalJournal of Visualized Experiments
Volume2012
Issue number61
DOIs
Publication statusPublished - 2012

Cite this

Benard, E. L., van der Sar, A. M., Ellett, F., Lieschke, G. J., Spaink, H. P., & Meijer, A. H. (2012). Infection of zebrafish embryos with intracellular bacterial pathogens. Journal of Visualized Experiments, 2012(61), 1 - 8. https://doi.org/10.3791/3781
Benard, Erica L ; van der Sar, Astrid M ; Ellett, Felix ; Lieschke, Graham J ; Spaink, Herman P ; Meijer, Annemarie H. / Infection of zebrafish embryos with intracellular bacterial pathogens. In: Journal of Visualized Experiments. 2012 ; Vol. 2012, No. 61. pp. 1 - 8.
@article{7bbf5f28ccca483fb1390e384c1a8193,
title = "Infection of zebrafish embryos with intracellular bacterial pathogens",
abstract = "Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage. The site of micro-injection of bacteria into the embryo determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.",
author = "Benard, {Erica L} and {van der Sar}, {Astrid M} and Felix Ellett and Lieschke, {Graham J} and Spaink, {Herman P} and Meijer, {Annemarie H}",
year = "2012",
doi = "10.3791/3781",
language = "English",
volume = "2012",
pages = "1 -- 8",
journal = "Journal of Visualized Experiments",
issn = "1940-087X",
publisher = "Journal of Visualized Experiments",
number = "61",

}

Benard, EL, van der Sar, AM, Ellett, F, Lieschke, GJ, Spaink, HP & Meijer, AH 2012, 'Infection of zebrafish embryos with intracellular bacterial pathogens', Journal of Visualized Experiments, vol. 2012, no. 61, pp. 1 - 8. https://doi.org/10.3791/3781

Infection of zebrafish embryos with intracellular bacterial pathogens. / Benard, Erica L; van der Sar, Astrid M; Ellett, Felix; Lieschke, Graham J; Spaink, Herman P; Meijer, Annemarie H.

In: Journal of Visualized Experiments, Vol. 2012, No. 61, 2012, p. 1 - 8.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Infection of zebrafish embryos with intracellular bacterial pathogens

AU - Benard, Erica L

AU - van der Sar, Astrid M

AU - Ellett, Felix

AU - Lieschke, Graham J

AU - Spaink, Herman P

AU - Meijer, Annemarie H

PY - 2012

Y1 - 2012

N2 - Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage. The site of micro-injection of bacteria into the embryo determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.

AB - Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage. The site of micro-injection of bacteria into the embryo determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.

UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415172/pdf/jove-61-3781.pdf

U2 - 10.3791/3781

DO - 10.3791/3781

M3 - Article

VL - 2012

SP - 1

EP - 8

JO - Journal of Visualized Experiments

JF - Journal of Visualized Experiments

SN - 1940-087X

IS - 61

ER -