Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering

Hang Zhou, Xia Sheng, Jie Xiao, Zhenyao Ding, Dandan Wang, Xiqi Zhang, Jian Liu, Renfei Wu, Xinjian Feng, Lei Jiang

Research output: Contribution to journalArticleResearchpeer-review

22 Citations (Scopus)

Abstract

The use of photocatalysis for water purification and environmental protection is of key interest. However, the reaction kinetics can be limited by the restricted accessibility of electron acceptor oxygen and the low adsorption of organic compounds-crucial factors underlying photocatalytic performance. Here we simultaneously alleviate these constraints via reaction interface microenvironment design using superhydrophobic (SHB) TiO2 nanoarrays as a model photocatalyst. The low surface energy and rough surface microstructure features of the SHB nanoarrays give the photocatalytic system long-range hydrophobic force and an air-water-solid triphase reaction interface. This simultaneously changes the adsorption model of organic compounds and the access pathway of oxygen, leading to a markedly enhanced adsorption capacity and higher interfacial oxygen levels. These synergistic qualities result in over 30-fold higher reaction kinetics versus a normal diphase system. In addition, this photocatalytic system is stable via repeated cycling. Our findings highlight the importance of reaction interface microenvironment design and reveal an effective path for the development of efficient photocatalysis systems.

Original languageEnglish
Pages (from-to)2738-2743
Number of pages6
JournalJournal of the American Chemical Society
Volume142
Issue number6
DOIs
Publication statusPublished - 12 Feb 2020
Externally publishedYes

Cite this