Increased Expression of Renal Drug Transporters in a Mouse Model of Familial Alzheimer's Disease

Yijun Pan, Kotaro Omori, Izna Ali, Masanori Tachikawa, Tetsuya Terasaki, Kim L.R. Brouwer, Joseph A. Nicolazzo

Research output: Contribution to journalArticleResearchpeer-review

13 Citations (Scopus)

Abstract

It is well established that the expression and function of drug transporters at the blood-brain barrier are altered in Alzheimer's disease (AD). However, we recently demonstrated in a mouse model of AD that the expression of key drug transporters and metabolizing enzymes was modified in peripheral organs, such as the small intestine and liver, suggesting that systemic drug absorption may be altered in AD. The purpose of this study was to determine whether the expression of drug transporters in the kidneys differed between 8- to 9-month-old wild-type mice and APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a mouse model of familial AD, using a quantitative targeted absolute proteomics approach. The protein expression of the drug transporters—multidrug resistance-associated protein 2, organic anion transporter 3, and organic cation transporter 2—was upregulated 1.6-, 1.3-, and 1.4-fold, respectively, in kidneys from APP/PS1 mice relative to wild-type mice. These results suggest that in addition to modified oral absorption of certain drugs, it is possible that the renal excretion of drugs that are multidrug resistance-associated protein 2, organic anion transporter 3, and organic cation transporter 2 substrates could be altered in AD. These changes could affect the interpretation of studies conducted during drug development using this mouse model of AD and potentially impact dosage regimens of such drugs prescribed in this patient population.

Original languageEnglish
Pages (from-to)2484-2489
Number of pages6
JournalJournal of Pharmaceutical Sciences
Volume108
Issue number7
DOIs
Publication statusPublished - Jul 2019

Keywords

  • Alzheimer's disease
  • multidrug resistance-associated protein(s) (MDR)
  • organic anion transporter(s) (OAT)
  • organic cation transporter(s) (OCT)
  • renal transport
  • transporters

Cite this