TY - JOUR
T1 - In situ phosphorylation of immobilized receptors on biosensor surfaces: Application to E-cadherin/beta-catenin interactions
AU - Catimel, Bruno
AU - Layton, Meredith
AU - Church, Nicole
AU - Ross, Janine
AU - Condron, Melanie
AU - Faux, Maree
AU - Simpson, Richard J
AU - Burgess, Anthony W
AU - Nice, Edouard C
PY - 2006
Y1 - 2006
N2 - Phosphorylation is a key posttranslational modification for modulating biological interactions. Biosensor technology is ideally suited for examining in real time the role of phosphorylation on protein-protein interactions in signaling pathways. We have developed processes for on-chip phosphorylation of immobilized receptors on biosensor surfaces. These processes have been used to analyze E-cadherin/beta-catenin interactions. Phosphorylation of the intracellular domain (ICD) of E-cadherin modulates its affinity to beta-catenin and consequently the strength of cell-cell adhesion. We have phosphorylated immobilized E-cadherin ICD in situ using casein kinase 1 (CK1), casein kinase 2 (CK2), and src. On-chip phosphorylation of E-cadherin was confirmed using anti-phosphoserine and anti-phosphotyrosine antibodies. The binding of beta-catenin to E-cadherin was analyzed quantitatively. CK1 phosphorylation of E-cadherin increased the binding affinity to beta-catenin from approximately 230 to 4 nM. A similar increase in affinity, from 260 to 4 nM, was obtained with CK2 phosphorylation of E-cadherin. However, phosphorylation by src kinase decreased the affinity constant from approximately 260 nM to 4 microM. Interestingly, phosphorylation of E-cadherin by CK1 or CK2 prevented the inhibition of beta-catenin binding by src phosphorylation.
AB - Phosphorylation is a key posttranslational modification for modulating biological interactions. Biosensor technology is ideally suited for examining in real time the role of phosphorylation on protein-protein interactions in signaling pathways. We have developed processes for on-chip phosphorylation of immobilized receptors on biosensor surfaces. These processes have been used to analyze E-cadherin/beta-catenin interactions. Phosphorylation of the intracellular domain (ICD) of E-cadherin modulates its affinity to beta-catenin and consequently the strength of cell-cell adhesion. We have phosphorylated immobilized E-cadherin ICD in situ using casein kinase 1 (CK1), casein kinase 2 (CK2), and src. On-chip phosphorylation of E-cadherin was confirmed using anti-phosphoserine and anti-phosphotyrosine antibodies. The binding of beta-catenin to E-cadherin was analyzed quantitatively. CK1 phosphorylation of E-cadherin increased the binding affinity to beta-catenin from approximately 230 to 4 nM. A similar increase in affinity, from 260 to 4 nM, was obtained with CK2 phosphorylation of E-cadherin. However, phosphorylation by src kinase decreased the affinity constant from approximately 260 nM to 4 microM. Interestingly, phosphorylation of E-cadherin by CK1 or CK2 prevented the inhibition of beta-catenin binding by src phosphorylation.
UR - http://www.sciencedirect.com/science/article/pii/S0003269706005422
U2 - 10.1016/j.ab.2006.07.034
DO - 10.1016/j.ab.2006.07.034
M3 - Article
SN - 0003-2697
VL - 357
SP - 277
EP - 288
JO - Analytical Biochemistry
JF - Analytical Biochemistry
IS - 2
ER -